我一直试图在一个半径为“内半径”的球面上生成点,使它们均匀分布。该算法在半径为1的情况下工作,但在半径较大的情况下生成的点比预期的少。 我已经看过了类似的问题,但它们似乎是为了在整个体积中生成点,而不只是在球面上。
import numpy as np
PI=np.pi
def spherical_to_cartesian(pol_ang,azim_ang,radius): #This function converts given spherical coordinates (theta, phi and radius) to cartesian coordinates.
return np.array((radius*np.sin(pol_ang) * np.cos(azim_ang),
radius*np.sin(pol_ang) * np.sin(azim_ang),
radius*np.cos(pol_ang))
)
def get_electron_coordinates_list(inner_radius,electron_count):
#Algorithm used was mostly taken from https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf . Explanations in code added by me.
electron_coordinate_list=[]
inner_area=4*(PI*inner_radius**2)
area_per_electron=inner_area/electron_count
pseudo_length_per_electron=np.sqrt(area_per_electron) #This is the side length of a square where the area of it is the area per electron on the sphere.
#Now, we need to get a value of angular space, such that angular space between electrons on latitude and longitude per electron is equal
#As a first step to obtaining this, we must make another value holding a whole number approximation of the ratio between PI and the pseudo_length. This will give the number of
#possible latitudes.
possible_count_of_lats=np.round(PI/pseudo_length_per_electron)
approx_length_per_electron_lat=PI/possible_count_of_lats #This is the length between electrons on a latitude
approx_length_per_electron_long=area_per_electron/approx_length_per_electron_lat #This is the length between electrons on a longitude
for electron_num_lat in range(int(possible_count_of_lats.item())): #The int(somenumpyvalue.item()) is used because Python cannot iterate over a numpy integer and it must be converted to normal int.
pol_ang=PI*(electron_num_lat+0.5)/possible_count_of_lats #The original algorithm recommended pol_ang=PI*(electron_num_lat+0.5)/possible_count_of_lats. The 0.5 appears to be added in order to get a larger number of coordinates.
#not sure if removing the 0.5 affects results. It didnt do so drastically, so what gives? Anyway, this gets the polar angle as PI*(latitudenumber)/totalnumberoflatitudes.
possible_count_of_longs=np.round(2*PI*np.sin(pol_ang)/approx_length_per_electron_long)
for electron_num_long in range(int(possible_count_of_longs.item())):
azim_ang=(2*PI)*(electron_num_long)/possible_count_of_longs #This gets the azimuthal angle as 2PI*longitudenumber/totalnumberoflongitudes
electron_coordinate=spherical_to_cartesian(pol_ang, azim_ang,inner_radius) #Converts the recieved spherical coordinates to cartesian so Manim can easily handle them.
electron_coordinate_list.append(electron_coordinate) #Add this coordinate to the electron_coordinate_list
print("Got coordinates: ",electron_coordinate) #Print the coordinate recieved.
print(len(electron_coordinate_list)," points generated.") #Print the amount of electrons will exist. Comment these two lines out if you don't need the data.
return electron_coordinate_list
get_electron_coordinates_list(1,100)
get_electron_coordinates_list(2,100)
Spherical_to_Cartesian()只是将球面点转换成笛卡尔坐标。 对于半径为1的100个点,它会生成99个点。 但是,如果半径为2并且请求100个点,则只生成26个点。 问题来源StackOverflow 地址:/questions/59384199/fool-proof-algorithm-for-uniformly-distributing-points-on-a-spheres-surface
如果你可以在球面上均匀地生成点,那么要得到球面上的均匀分布,你可以简单地对向量进行归一化,使它们的半径等于球面的半径。 或者,你可以利用独立的等分布正态分布是旋转不变的这一事实。如果你从三个平均值为1,标准差为0的正态分布中取样,然后对向量进行归一化,它在球面上是均匀的。这里有一个例子:
import random
def sample_sphere_surface(radius=1):
x, y, z = (random.normalvariate(0, 1) for i in range(3))
scalar = radius / (x**2 + y**2 + z**2) ** 0.5
return (x * scalar, y * scalar, z * scalar)
绝对可靠的是,当x、y和z都恰好为0时,我们可以处理非常不可能出现的0除错误:
def sample_sphere_surface(radius=1):
while True:
try:
x, y, z = (random.normalvariate(0, 1) for i in range(3))
scalar = radius / (x**2 + y**2 + z**2) ** 0.5
return (x * scalar, y * scalar, z * scalar)
except ZeroDivisionError:
pass
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。