开发者社区> 问答> 正文

如何使用DataFrame中的CountVectorizerModel.vocabulary将termIndices转换为术语?

我使用CountVectorizerModel来创建文本中的特征以在LDA中训练

label sentence words features
0.0 Hi I heard about Spark [hi, i, heard, about, spark] (30,[1,5,6,7,16],[1.0,1.0,1.0,1.0,1.0])
0.0 I wish Java could use case classes [i, wish, java, could, use, case, classes] (30,[5,9,11,13,24,26,29],[1.0,1.0,1.0,1.0,1.0,1.0,1.0])
1.0 Logistic regression models are neat [logistic, regression, models, are, neat] (30,[4,14,18,21,22],[1.0,1.0,1.0,1.0,1.0])
1.0 They are cats [they, are, cats] (30,[3,4,17],[1.0,1.0,1.0])
0.0 cat is only one cat in a group of cats [cat, is, only, one, cat, in, a, group, of, cats] (30,[0,2,3,8,10,20,23,27,28],[2.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0])
1.0 cat is meowingful all day long. [cat, is, meowingful, all, day, long.] (30,[0,2,12,15,19,25],[1.0,1.0,1.0,1.0,1.0,1.0])
1.0 cat [cat] (30,[0],[1.0])
1.0 spark [spark] (30,[1],[1.0])
1.0 spark cat [spark, cat] (30,[0,1],[1.0,1.0])

这是主题

val topics = model.describeTopics(3)
println("The topics described by their top-weighted terms:")
topics.show(false)

topic termIndices termWeights
0 [2, 5, 7] [0.03954771670945735, 0.03941180947330347, 0.03888945410782809]
1 [3, 23, 20] [0.038638315281474093, 0.037879704408459995, 0.03774139169021561]
2 [9, 28, 21] [0.04232988497943897, 0.04007287769364308, 0.039937267948921336]
3 [18, 5, 15] [0.03705824484750299, 0.036890803795663674, 0.036716976690456406]
4 [15, 2, 19] [0.051298533195568756, 0.049034272085125466, 0.04766027890074748]
5 [8, 15, 28] [0.039784800740184825, 0.03919450578763458, 0.03747537818514296]
6 [26, 7, 10] [0.03914211167490289, 0.038519959566040284, 0.03777486155909476]
7 [3, 2, 25] [0.03824521540169412, 0.03809586773398763, 0.03744203244313033]
8 [8, 28, 1] [0.04141091418342947, 0.040997706216988956, 0.03925572055141317]
9 [16, 24, 23] [0.04106798576100414, 0.03947867647938766, 0.036999875515655097]

和他们的架构

root
|-- topic: integer (nullable = false)
|-- termIndices: array (nullable = true)
| |-- element: integer (containsNull = false)
|-- termWeights: array (nullable = true)
| |-- element: double (containsNull = false)
我想创建另一个列(命名术语)来显示String而不是索引。

所以,我创建了一个函数

val lookup2 = ((a:Array[Int]) => {

a.map(x => cvModel.vocabulary(x))

})
当我用一个案例进行测试时,函数lookup2运行良好

lookup2(Array(1,2,3))
res194: Array[String] = Array(spark, is, cats)
我试图将函数转换为UDF并应用于整列

val lookupudf = udf(lookup2)
topics.withColumn("term", lookupudf($"termIndices")).show()
这是行不通的

org.apache.spark.SparkException: Failed to execute user defined function($anonfun$1: (array) => array)
at org.apache.spark.sql.catalyst.expressions.ScalaUDF.eval(ScalaUDF.scala:1058)
at org.apache.spark.sql.catalyst.expressions.UnaryExpression.eval(Expression.scala:359)
at org.apache.spark.sql.catalyst.expressions.Alias.eval(namedExpressions.scala:139)
at org.apache.spark.sql.catalyst.expressions.InterpretedProjection.apply(Projection.scala:48)
at org.apache.spark.sql.catalyst.expressions.InterpretedProjection.apply(Projection.scala:30)
at scala.collection.TraversableLike

$$ anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike $$

anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.AbstractTraversable.map(Traversable.scala:104)
at org.apache.spark.sql.catalyst.optimizer.ConvertToLocalRelation

$$ anonfun$apply$23.applyOrElse(Optimizer.scala:1191) at org.apache.spark.sql.catalyst.optimizer.ConvertToLocalRelation $$

anonfun$apply$23.applyOrElse(Optimizer.scala:1186)
at org.apache.spark.sql.catalyst.trees.TreeNode

$$ anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode $$

anonfun$2.apply(TreeNode.scala:267)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266)
at org.apache.spark.sql.catalyst.trees.TreeNode

$$ anonfun$transformDown$1.apply(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode $$

anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode

$$ anonfun$4.apply(TreeNode.scala:306) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode $$

anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode

$$ anonfun$transformDown$1.apply(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode $$

anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256)
at org.apache.spark.sql.catalyst.optimizer.ConvertToLocalRelation$.apply(Optimizer.scala:1186)
at org.apache.spark.sql.catalyst.optimizer.ConvertToLocalRelation$.apply(Optimizer.scala:1185)
at org.apache.spark.sql.catalyst.rules.RuleExecutor

$$ anonfun$execute$1 $$

anonfun$apply$1.apply(RuleExecutor.scala:87)
at org.apache.spark.sql.catalyst.rules.RuleExecutor

$$ anonfun$execute$1 $$

anonfun$apply$1.apply(RuleExecutor.scala:84)
at scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:57)
at scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:66)
at scala.collection.mutable.WrappedArray.foldLeft(WrappedArray.scala:35)
at org.apache.spark.sql.catalyst.rules.RuleExecutor

$$ anonfun$execute$1.apply(RuleExecutor.scala:84) at org.apache.spark.sql.catalyst.rules.RuleExecutor $$

anonfun$execute$1.apply(RuleExecutor.scala:76)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:76)
at org.apache.spark.sql.execution.QueryExecution.optimizedPlan$lzycompute(QueryExecution.scala:66)
at org.apache.spark.sql.execution.QueryExecution.optimizedPlan(QueryExecution.scala:66)
at org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:72)
at org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:68)
at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:77)
at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:77)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3248)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2484)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2698)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:254)
at org.apache.spark.sql.Dataset.show(Dataset.scala:723)
at org.apache.spark.sql.Dataset.show(Dataset.scala:682)
at org.apache.spark.sql.Dataset.show(Dataset.scala:691)
... 52 elided
Caused by: java.lang.ClassCastException: scala.collection.mutable.WrappedArray$ofRef cannot be cast to [I
at $anonfun$1.apply(:58)
at org.apache.spark.sql.catalyst.expressions.ScalaUDF

$$ anonfun$2.apply(ScalaUDF.scala:102) at org.apache.spark.sql.catalyst.expressions.ScalaUDF $$

anonfun$2.apply(ScalaUDF.scala:101)
at org.apache.spark.sql.catalyst.expressions.ScalaUDF.eval(ScalaUDF.scala:1055)
... 105 more

展开
收起
社区小助手 2018-12-19 17:19:31 2825 0
1 条回答
写回答
取消 提交回答
  • 社区小助手是spark中国社区的管理员,我会定期更新直播回顾等资料和文章干货,还整合了大家在钉群提出的有关spark的问题及回答。

    DataFrame中的数组是WrappedArray。所以我应该定义我的udf如下

    import org.apache.spark.sql.functions.udf
    val lookup3 = ((a:WrappedArray[Int]) => {

    a.toArray.map(x => cvModel.vocabulary(x))

    })
    val lookupudf3 = udf(lookup3)
    然后使用udf创建新列

    topics.withColumn("term", lookupudf3($"termIndices")).show()
    它应该工作

    topic termIndices termWeights term
    0 [2, 5, 7] [0.03954762152543... [cats, are, hi]
    1 [3, 23, 20] [0.03863839536342... [is, long., use]
    2 [9, 28, 21] [0.04232988718372... [could, they, cla...
    3 [18, 5, 15] [0.03705824666867... [of, are, one]
    4 [18, 3, 15] [0.04114420013742... [of, is, one]
    5 [8, 15, 28] [0.03978480361117... [a, one, they]
    6 [26, 7, 10] [0.03914211373502... [logistic, hi, in]
    7 [3, 25, 23] [0.05067447986285... [is, day, long.]
    8 [8, 28, 1] [0.04141091392312... [a, they, spark]
    9 [16, 24, 23] [0.04106809235206... [meowingful, java...
    2019-07-17 23:23:05
    赞同 展开评论 打赏
问答排行榜
最热
最新

相关电子书

更多
低代码开发师(初级)实战教程 立即下载
冬季实战营第三期:MySQL数据库进阶实战 立即下载
阿里巴巴DevOps 最佳实践手册 立即下载