为什么rsa密码能正确解密-问答-阿里云开发者社区-阿里云

开发者社区> 问答> 正文

为什么rsa密码能正确解密

知与谁同 2018-07-21 11:56:27 765
为什么rsa密码能正确解密
数据安全/隐私保护
分享到
取消 提交回答
全部回答(1)
  • 沉默术士
    2019-07-17 22:56:34
    以前也接触过RSA加密算法,感觉这个东西太神秘了,是数学家的事,和我无关。但是,看了很多关于RSA加密算法原理的资料之后,我发现其实原理并不是我们想象中那么复杂,弄懂之后发现原来就只是这样而已..
    学过算法的朋友都知道,计算机中的算法其实就是数学运算。所以,再讲解RSA加密算法之前,有必要了解一下一些必备的数学知识。我们就从数学知识开始讲解。
    必备数学知识
    RSA加密算法中,只用到素数、互质数、指数运算、模运算等几个简单的数学知识。所以,我们也需要了解这几个概念即可。
    素数
    素数又称质数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。这个概念,我们在上初中,甚至小学的时候都学过了,这里就不再过多解释了。
    互质数
    百度百科上的解释是:公因数只有1的两个数,叫做互质数。;维基百科上的解释是:互质,又称互素。若N个整数的最大公因子是1,则称这N个整数互质。
    常见的互质数判断方法主要有以下几种:
    两个不同的质数一定是互质数。例如,2与7、13与19。
    一个质数,另一个不为它的倍数,这两个数为互质数。例如,3与10、5与 26。
    相邻的两个自然数是互质数。如 15与 16。
    相邻的两个奇数是互质数。如 49与 51。
    较大数是质数的两个数是互质数。如97与88。
    小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。
    2和任何奇数是互质数。例如2和87。
    1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
    辗转相除法。
    指数运算
    指数运算又称乘方计算,计算结果称为幂。nm指将n自乘m次。把nm看作乘方的结果,叫做”n的m次幂”或”n的m次方”。其中,n称为“底数”,m称为“指数”。
    模运算
    模运算即求余运算。“模”是“Mod”的音译。和模运算紧密相关的一个概念是“同余”。数学上,当两个整数除以同一个正整数,若得相同余数,则二整数同余。
    两个整数a,b,若它们除以正整数m所得的余数相等,则称a,b对于模m同余,记作: a ≡ b (mod m);读作:a同余于b模m,或者,a与b关于模m同余。例如:26 ≡ 14 (mod 12)。
    RSA加密算法
    RSA加密算法简史
    RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。
    公钥与密钥的产生
    假设Alice想要通过一个不可靠的媒体接收Bob的一条私人讯息。她可以用以下的方式来产生一个公钥和一个私钥:
    随意选择两个大的质数p和q,p不等于q,计算N=pq。
    根据欧拉函数,求得r = (p-1)(q-1)
    选择一个小于 r 的整数 e,求得 e 关于模 r 的模反元素,命名为d。(模反元素存在,当且仅当e与r互质)
    将 p 和 q 的记录销毁。
    (N,e)是公钥,(N,d)是私钥。Alice将她的公钥(N,e)传给Bob,而将她的私钥(N,d)藏起来。
    加密消息
    假设Bob想给Alice送一个消息m,他知道Alice产生的N和e。他使用起先与Alice约好的格式将m转换为一个小于N的整数n,比如他可以将每一个字转换为这个字的Unicode码,然后将这些数字连在一起组成一个数字。假如他的信息非常长的话,他可以将这个信息分为几段,然后将每一段转换为n。用下面这个公式他可以将n加密为c:

    ne ≡ c (mod N)
    计算c并不复杂。Bob算出c后就可以将它传递给Alice。
    解密消息
    Alice得到Bob的消息c后就可以利用她的密钥d来解码。她可以用以下这个公式来将c转换为n:
    cd ≡ n (mod N)
    得到n后,她可以将原来的信息m重新复原。
    解码的原理是:
    cd ≡ n e·d(mod N)
    以及ed ≡ 1 (mod p-1)和ed ≡ 1 (mod q-1)。由费马小定理可证明(因为p和q是质数)
    n e·d ≡ n (mod p)   和  n e·d ≡ n (mod q)
    这说明(因为p和q是不同的质数,所以p和q互质)
    n e·d ≡ n (mod pq)
    签名消息
    RSA也可以用来为一个消息署名。假如甲想给乙传递一个署名的消息的话,那么她可以为她的消息计算一个散列值(Message digest),然后用她的密钥(private key)加密这个散列值并将这个“署名”加在消息的后面。这个消息只有用她的公钥才能被解密。乙获得这个消息后可以用甲的公钥解密这个散列值,然后将这个数据与他自己为这个消息计算的散列值相比较。假如两者相符的话,那么他就可以知道发信人持有甲的密钥,以及这个消息在传播路径上没有被篡改过。

    RSA加密算法的安全性

    当p和q是一个大素数的时候,从它们的积pq去分解因子p和q,这是一个公认的数学难题。然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。
    1994年彼得·秀尔(Peter Shor)证明一台量子计算机可以在多项式时间内进行因数分解。假如量子计算机有朝一日可以成为一种可行的技术的话,那么秀尔的算法可以淘汰RSA和相关的衍生算法。(即依赖于分解大整数困难性的加密算法)
    另外,假如N的长度小于或等于256位,那么用一台个人电脑在几个小时内就可以分解它的因子了。1999年,数百台电脑合作分解了一个512位长的N。1997年后开发的系统,用户应使用1024位密钥,证书认证机构应用2048位或以上。
    RSA加密算法的缺点

    虽然RSA加密算法作为目前最优秀的公钥方案之一,在发表三十多年的时间里,经历了各种攻击的考验,逐渐为人们接受。但是,也不是说RSA没有任何缺点。由于没有从理论上证明破译RSA的难度与大数分解难度的等价性。所以,RSA的重大缺陷是无法从理论上把握它的保密性能如何。在实践上,RSA也有一些缺点:
    产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密;
    分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,
    0 0
+ 订阅

云安全开发者的大本营

推荐文章
相似问题