2022世界人工智能大会大模型主题论坛星光云集,共话大模型的创新与生态发展!

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 本次“大规模预训练模型”主题论坛由阿里巴巴集团主办,世界人工智能大会组委会指导,整体围绕“大规模预训练模型的创新、落地和开源开放”展开,将探讨的边界延伸至算法模型、大数据及训练框架等方向,邀请到来自阿里巴巴,澜舟科技,清华大学,粤港澳大湾区数字经济研究院,深势科技,复旦大学等机构,在大规模预训练模型领域深耕多年的领军人物,通过keynote演讲和圆桌论坛两个环节,展示国产大模型多元生态下的技术成果和思考。

BERT、GPT-3的横空出世令“大规模预训练模型”成为了近年来人工智能领域出现频率最高的词汇之一。大规模预训练模型将数据和算法的优势资源进行整合,辐射至医疗、电商、文娱、金融、安防等领域,大幅度降低了下游行业和企业人工智能化转型的门槛。
大规模预训练模型指出了一种迈向通用的人工智能的路径。而令大模型真正成为下一代人工智能的基础建设,离不开“算法、算力、数据”,多环节突破;也离不开产学研届共同以更加开放的姿态创造共享、互惠的新生态。
本次“大规模预训练模型”主题论坛由阿里巴巴集团主办,世界人工智能大会组委会指导,整体围绕“大规模预训练模型的创新、落地和开源开放”展开,将探讨的边界延伸至算法模型、大数据及训练框架等方向,邀请到来自阿里巴巴,澜舟科技,清华大学,粤港澳大湾区数字经济研究院,深势科技,复旦大学等机构,在大规模预训练模型领域深耕多年的领军人物,通过keynote演讲和圆桌论坛两个环节,展示国产大模型多元生态下的技术成果和思考。

论坛四大关键词
•“多元+生态”
在本次论坛中,将汇聚国内多家来自不同预训练大模型团队的真知灼见,涉及的热门大模型团队包括M6、AliceMind、孟子、封神榜等,涵盖产学研三届,呈现国内大模型生态圈的大图和趋势。话题涉及全面,覆盖大模型领域最热门的探讨和融合方向:从基础层、技术层到应用层的技术发展与创新,新的应用机遇与结合,产业化方法论,开放的生态建设等……

•“创新+引领”
目前国内的大模型究竟在做些什么?大模型经历了参数军备赛后的下一程该走向何处?大模型发展的卡点在哪里?大模型究竟如何做到和各个产业协同,将它的“智慧”回馈给社会?……
本次论坛也将涉及大规模预训练技术前沿创新成果的发布,阿里巴巴资深副总裁/达摩院副院长周靖人老师将展示阿里巴巴大模型的最新全貌;澜舟科技创始人兼CEO周明老师,清华大学计算机系教授唐杰老师,IDEA研究院讲席科学家张家兴等,也将现场讲解各自大模型的探索成果。同时,论坛嘉宾将基于大模型发展的现状进行解读,并针对大模型的未来发展提出引领性、前瞻性的观点,为领域探明大规模预训练模型的的下一个发展阶段。关注人工智能的各大机构将收获新思路,各大的企业也将从中获得大模型助力“AI化”的新启发。

论坛议程
议程图 826.jpg

线下观众请扫描上图中二维码进行报名

线上云观看地址:
https://online2022.worldaic.com.cn/forumdetail?uuid=2ae0cf7441f3499da4f10c17e84900a5

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
目录
相关文章
|
18天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
36 12
|
1月前
|
机器学习/深度学习 人工智能 机器人
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
|
1月前
|
机器学习/深度学习 人工智能 图形学
如何将图形学先验知识融入到人工智能模型中?
如何将图形学先验知识融入到人工智能模型中?
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
85 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
89 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
5月前
|
机器学习/深度学习 人工智能 数据处理
人工智能平台PAI操作报错合集之任务重启后出现模型拆分报错,该怎么办
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
25天前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能中的深度学习模型优化策略
探索人工智能中的深度学习模型优化策略
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
85 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与模型知识库在移动医疗产品中的落地应用
在现代医疗体系中,通义千问大模型与MaxKB知识库的结合,为医生和患者提供了前所未有的支持与便利。该系统通过实时问答、临床决策辅助、个性化学习和患者教育等功能,显著提升了诊疗效率和患者满意度。实际应用如乐问医学APP展示了其强大优势,但数据隐私和安全问题仍需关注。
59 0
|
3月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
119 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
下一篇
DataWorks