Python-序列基本概念

简介: Python-序列基本概念

序列

序列的概念

包含若干个元素, 元素有序排列, 可以通过下标访问到一个或者多个元素. 这样的对象, Python中统一称为序列(Sequence).

Python中的以下对象都属于序列

  • 字符串
  • 列表
  • 元组

同是序列, 他们的使用方式有很多相通之处


注意:序列里面的元素的顺序很重要,因为比较是按顺序比

a = [1,2,3]
b = [3,2,1]
print(a ==b)    #False

标准类型操作符

下列标准类型操作符, 大多数情况下都是适用于序列对象的(少部分特例是, 序列中保存的元素不支持标准类型操作符).

image-20220318083954829


序列类型操作符

  • in/not in: 判定一个元素是否存在于序列中, 返回布尔值.
a = [1,2,3,4]
print(3 in a)    #True
print(3 not in a)    #False
  • 连接操作符(+): 把两个相同类型的序列进行连接.
a = [1,2,3,4]
b = [5,6]
print(a+b)    #返回一个新列表,包含了a和b的所有元素[1, 2, 3, 4, 5, 6]
  • 连接操作符往往并不高效(新创建对象, 把原有对象拷贝进去). 对于列表, 推荐使用extend来完成这样的操作; 对于字符串, 推荐使用join这样的方法.
a = [1,2,3,4]
b = [5,6]
a.extend(b)        #相当于把b的元素都插入到a的后面
print(a)    #[1, 2, 3, 4, 5, 6]
  • 重复操作符(*): 让一个序列重复N次.
a  =[1,2,3]
print(a*3)    #[1, 2, 3, 1, 2, 3, 1, 2, 3]

序列的切片操作

  • 切片操作符([ ], [A:B], [A:B:C]): 通过下标访问其中的某一个元素, 或者某个子序列

image-20220318084117964

  • 正数的索引以序列的起始位置作为起点, 负数的索引以序列的结束位置做为起点.
  • 试图访问一个越界的索引, 会引发异常(可以简单理解成程序执行出错)
a  =[1,2,3]
print(a[100])
#执行结果:
IndexError: list index out of range

关于切片:左闭右开区间

方式1:[:] 左右两个端点都不写值,截取的是整个序列的元素,从头到尾

a  =[1,2,3,4,5]
print(a[:])#[1, 2, 3, 4, 5]

方式2:[A:B]

元素下标取值范围: [A,B)

a  =[1,2,3,4,5]
print(a[1:3])        #[2,3]         截取下标[1,3)的元素        
print(a[1:-1])        #[2,3,4]     截取下标[1,-1)的元素
print(a[:3])        #[1,2,3]     截取下标[0,3)的元素    
print(a[1:])        #[2,3,4,5]     截取下标[1,-1)的元素

如果左边端点不写,默认从0开始, 右边端点不写,默认截取到最后一个位置(即:-1位置)


方式3:[A:B:C] 第三个参数表示步长,即每隔多少个元素截取一个

  • 扩展切片操作[::] 除了可以表示子序列的起始和结束位置, 还可以表示 "步长"
例子:
a = [1,2,3,4,5]
print(a[::2])   #每两个元素截取一个
#执行结果:
[1,3,5]

翻转字符串

字符串翻转, 这是一个非常基础, 也是笔试面试中会经常出现的一个题目. 我们学过C/C++, 有三种方法来解决这个问题.

方法1:首尾指针
char str[] = "abcdefg";
char* beg = str;
char* end = str + strlen(str);
while (beg < end) {
    swap(*beg++, *--end);
}

方法2:栈
char str[] = "abcdefg";
Stack stack;
char* p = str;
while(p) {
    stack.push(*p++);
}
int index = 0;
while(!stack.empty()){
    str[index++] = stack.top();
    stack.pop();
}

方法3:使用reverse + 迭代器翻转
#include <algorithm>
char str[] = "abcdefg";
std::reverse(str, str + strlen(str));    //指针就是天然的迭代器

python的做法:

a = "abcdefg"
print(a[::-1])

这个代码的含义:

a[::-1] -1表示往前走,从后往前拿元素

a = [1,2,3,4,5,6]
print(a[::-1])       #[6,5,4,3,2,1]
#含义
从-1位置往前走,先走到下标为-1位置,然后从6开始往前走

对于切片语法来说, 下标越界也没关系. 因为取的是前闭后开区间,区间里的元素, 能取到多少就取到
多少.


序列内建函数

len函数
len: 返回序列的长度.
a = [2,3,4,5]
print(len(a))    #4
b = "hello"
print(len(b))    #5

max函数 -O(N)
max: 返回序列中的最大值
a = [2,3,4,5]
print(max(a))    #5
b = "helloz"
print(max(b))    #z

min函数 -O(N)
min: 返回序列中的最小值
a = [2,3,4,5]
print(min(a))    #2
b = "helloz"
print(min(b))    #e

sorted函数
sorted: 排序. 这是一个非常有用的函数. 返回一个有序的序列(输入参数的副本).
a = ['abc','acb','a','b']    
print(sorted(a))    #['a', 'abc', 'acb', 'b']
a = [5,3,3,1,5]
print(sorted(a))    #[1, 3, 3, 5, 5]

sorted可以支持自定制排序规则


sum函数
sum: 序列中的元素求和( 要求序列中的元素都是数字)
a = [1,2,3,4,5]
print(sum(a))    #15
a= [1,'a']
print(sum(a))    #报错  unsupported operand type(s) for +: 'int' and 'str'

enumerate函数
enumerate: 同时枚举出序列的下标和值 可以避免很多丑陋的代码.

例如:找出元素在列表中的下标

a = [1,2,3,4,5]
def Find(input_list,x):
    for i in range(0,len(input_list)):
        if input_list[i] == x:
            return  i
    else:   #此处的else和for搭配
        return None

print(Find(a,2))    #1  下标为1

这里用for循环写的就不够优雅,使用enumerate函数就可以写的很优雅

a = [1,2,3,4,5]
def Find(input_list,x):
    for i ,item in enumerate(input_list):
        if item == x:
            return  i
    else:   #此处的else和for搭配
        return None

print(Find(a,2))    #1 下标为1

zip函数
zip: 这个函数的本意是 "拉链",
x = [1,2,3]
y = [4,5,6]
z = [7,8,9,10]    #多余的10不要,3行3列

print(zip(x,y,z))   #直接打印是对象的id    <zip object at 0x000001581CFE7748>
#把执行结果强转为list,列表
print(list(zip(x,y,z)))    #[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

#直观打印
for i in zip(x,y,z):
    print(i)
#执行结果:
(1, 4, 7)
(2, 5, 8)
(3, 6, 9)

zip可以理解为行列互换


zip的一个比较常见的用法, 就是构造字典

key = ('name','id','score')
value =('Mango','2022','99')
d = dict(zip(key,value))    #执行结果转为一个字典
print(d)    #  {'name': 'Mango', 'id': '2022', 'score': '99'}

相关文章
|
2月前
|
机器学习/深度学习 数据采集 算法
时间序列结构变化分析:Python实现时间序列变化点检测
在时间序列分析和预测中,准确检测结构变化至关重要。新出现的分布模式往往会导致历史数据失去代表性,进而影响基于这些数据训练的模型的有效性。
150 1
|
3月前
|
存储 数据挖掘 数据库
探索Python编程:从基础到高级探索移动应用开发之旅:从概念到实现
【8月更文挑战第29天】本文将带你进入Python的世界,无论你是初学者还是有一定经验的开发者。我们将从Python的基础知识开始,然后逐步深入到更复杂的主题。你将学习到如何编写清晰、高效的代码,以及如何使用Python进行数据分析和网络编程。最后,我们将介绍一些高级主题,如装饰器和生成器。让我们一起开始这段旅程吧!
|
3月前
|
机器学习/深度学习 算法 数据挖掘
6种有效的时间序列数据特征工程技术(使用Python)
在本文中,我们将探讨使用日期时间列提取有用信息的各种特征工程技术。
132 0
|
2月前
|
机器学习/深度学习 索引 Python
python之序列
python之序列
143 59
|
24天前
|
存储 编译器 索引
Python 序列类型(2)
【10月更文挑战第8天】
Python 序列类型(2)
|
25天前
|
存储 C++ 索引
Python 序列类型(1)
【10月更文挑战第8天】
|
2月前
|
测试技术 Python
探索Python中的装饰器:从基础概念到高级应用
本文深入探讨了Python中一个强大而灵活的特性——装饰器。从其基本定义出发,逐步解析装饰器的本质、运作机制以及如何高效利用这一工具来优化代码结构、增加功能和提升代码的可读性与可维护性。通过具体示例,包括自定义简单装饰器、带参数装饰器、多重装饰等高级话题,本文展示了装饰器在软件开发中的广泛应用,旨在为读者提供一个全面而实用的装饰器使用指南。
|
3月前
|
机器学习/深度学习 分布式计算 大数据
几行 Python 代码就可以提取数百个时间序列特征
几行 Python 代码就可以提取数百个时间序列特征
|
3月前
|
缓存 Python
探索Python中的装饰器:从概念到实战
【8月更文挑战第31天】装饰器,在Python中是一种强大的工具,能够让我们轻松地修改函数或类的行为。本文将带你从零开始理解装饰器的概念,并通过实际代码示例展示如何创建和使用它们。我们将一步步构建一个日志记录装饰器,并探讨其对提升代码可读性和重用性的影响。通过本文的学习,你将能够自信地在你的Python项目中应用装饰器技术。
|
9天前
|
设计模式 开发者 Python
Python编程中的设计模式:工厂方法模式###
本文深入浅出地探讨了Python编程中的一种重要设计模式——工厂方法模式。通过具体案例和代码示例,我们将了解工厂方法模式的定义、应用场景、实现步骤以及其优势与潜在缺点。无论你是Python新手还是有经验的开发者,都能从本文中获得关于如何在实际项目中有效应用工厂方法模式的启发。 ###