②机器学习分类算法之朴素贝叶斯

简介: 机器学习分类算法之朴素贝叶斯

朴素贝叶斯应用场景

在文本分类中,假设我们有一个文档d∈X,X是文档向量空间(document space),和一个固定的类集合C={c1,c2,…,cj},类别又称为标签。


显然,文档向量空间是一个高维度空间。我们把一堆打了标签的文档集合<d,c>作为训练样本,<d,c>∈X×C。例如:<d,c>={Beijing joins the World Trade Organization, China}


对于这个只有一句话的文档,我们把它归类到 China,即打上china标签。我们期望用某种训练算法,训练出一个函数γ,能够将文档映射到某一个类别:γ:X→C


多项式贝叶斯

在多项式模型中, 设某文档d=(t1,t2,…,tk),tk是该文档中出现过的单词,允许重复,则


先验概率P(c)= 类c下单词总数/整个训练样本的单词总数


类条件概率P(tk|c)=(类c下单词tk在各个文档中出现过的次数之和+1)/(类c下单词总数+|V|)


V是训练样本的单词表(即抽取单词,单词出现多次,只算一个),|V|则表示训练样本包含多少种单词。在这里,m=|V|, p=1/|V|。


P(tk|c)可以看作是单词tk在证明d属于类c上提供了多大的证据,而P(c)则可以认为是类别c在整体上占多大比例(有多大可能性)。


伯努利模型


伯努利模型跟多项式模型的差别在计算公式不同:


P(c)= 类c下文件总数/整个训练样本的文件总数


P(tk|c)=(类c下包含单词tk的文件数+1)/(类c的文档总数+2)


二者的计算粒度不一样,多项式模型以单词为粒度,伯努利模型以文件为粒度,因此二者的先验概率和类条件概率的计算方法都不同。


计算后验概率时,对于一个文档d,多项式模型中,只有在d中出现过的单词,才会参与后验概率计算,伯努利模型中,没有在d中出现,但是在全局单词表中出现的单词,也会参与计算,不过是作为“反方”参与的。


高斯模型


有些特征可能是连续型变量,比如说人的身高,物体的长度,这些特征如果使用决策树那些模型,可以转换成离散型的值,比如如果身高在160cm以下,特征值为1;在160cm和170cm之间,特征值为2;在170cm之上,特征值为3。也可以这样转换,将身高转换为3个特征,分别是f1、f2、f3,如果身高是160cm以下,这三个特征的值分别是1、0、0,若身高在170cm之上,这三个特征的值分别是0、0、1。


不过这些方式都不够细腻,高斯模型可以解决这个问题。高斯模型假设这些一个特征的所有属于某个类别的观测值符合高斯分布:




μ:获取各个类标记在各个特征上的均值


σ:获取各个类标记在各个特征上的方差


代码实现


image.png

高斯贝叶斯

# 加载模型
model = GaussianNB()
# 训练模型
model.fit(X_train,y_train)
# 预测值
y_pred = model.predict(X_test)
'''
评估指标
'''
# 求出预测和真实一样的数目
true = np.sum(y_pred == y_test )
print('预测对的结果数目为:', true)
print('预测错的的结果数目为:', y_test.shape[0]-true)
# 评估指标
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score,cohen_kappa_score
print('预测数据的准确率为: {:.4}%'.format(accuracy_score(y_test,y_pred)*100))
print('预测数据的精确率为:{:.4}%'.format(
      precision_score(y_test,y_pred)*100))
print('预测数据的召回率为:{:.4}%'.format(
      recall_score(y_test,y_pred)*100))
# print("训练数据的F1值为:", f1score_train)
print('预测数据的F1值为:',
      f1_score(y_test,y_pred))
print('预测数据的Cohen’s Kappa系数为:',
      cohen_kappa_score(y_test,y_pred))
# 打印分类报告
from sklearn.metrics import classification_report
print('预测数据的分类报告为:','\n',
      classification_report(y_test,y_pred))

image.png

image.png


ROC曲线和AUC面积

from sklearn.metrics import precision_recall_curve
from sklearn import metrics
# 预测正例的概率
y_pred_prob=model.predict_proba(X_test)[:,1]
# y_pred_prob ,返回两列,第一列代表类别0,第二列代表类别1的概率
#https://blog.csdn.net/dream6104/article/details/89218239
fpr, tpr, thresholds = metrics.roc_curve(y_test,y_pred_prob, pos_label=2)
#pos_label,代表真阳性标签,就是说是分类里面的好的标签,这个要看你的特征目标标签是0,1,还是1,2
roc_auc = metrics.auc(fpr, tpr)  #auc为Roc曲线下的面积
# print(roc_auc)
plt.figure(figsize=(8,6))
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.plot(fpr, tpr, 'r',label='AUC = %0.2f'% roc_auc)
plt.legend(loc='lower right')
# plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1.1])
plt.ylim([0, 1.1])
plt.xlabel('False Positive Rate') #横坐标是fpr
plt.ylabel('True Positive Rate')  #纵坐标是tpr
plt.title('Receiver operating characteristic example')
plt.show()

image.png


对于高斯贝叶斯模型的参数,一般是不需要进行调参的,使用该模型一般在数据集以及特征方面进行改进

通过模型进行选择重要的特征:9个,用于预测

from sklearn.model_selection import train_test_split,cross_val_score #拆分训练集和测试集
import lightgbm as lgbm #轻量级的高效梯度提升树
X_name=df.corr()[["n23"]].sort_values(by="n23",ascending=False).iloc[1:].index.values.astype("U")
X=df.loc[:,X_name.tolist()]
y=df.loc[:,['n23']]
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,stratify=y,random_state=1)
lgbm_reg = lgbm.LGBMRegressor(objective='regression',max_depth=6,num_leaves=25,learning_rate=0.005,n_estimators=1000,min_child_samples=80, subsample=0.8,colsample_bytree=1,reg_alpha=0,reg_lambda=0)
lgbm_reg.fit(X_train, y_train)
#选择最重要的20个特征,绘制他们的重要性排序图
lgbm.plot_importance(lgbm_reg, max_num_features=9)
##也可以不使用自带的plot_importance函数,手动获取特征重要性和特征名,然后绘图
feature_weight = lgbm_reg.feature_importances_
feature_name = lgbm_reg.feature_name_
feature_sort = pd.Series(data = feature_weight ,index = feature_name)
feature_sort = feature_sort.sort_values(ascending = False)
# plt.figure(figsize=(10,8))
# sns.barplot(feature_sort.values,feature_sort.index, orient='h')
lgbm_name=feature_sort.index[:9].tolist()
lgbm_name
X=df.loc[:,lgbm_name]
y=df.iloc[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,stratify=y,random_state=1)
# 加载模型
model = GaussianNB()
# 训练模型
model.fit(X_train,y_train)
# 预测值
y_pred = model.predict(X_test)
'''
评估指标
'''
# 求出预测和真实一样的数目
true = np.sum(y_pred == y_test )
print('预测对的结果数目为:', true)
print('预测错的的结果数目为:', y_test.shape[0]-true)
# 评估指标
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score,cohen_kappa_score
print('预测数据的准确率为: {:.4}%'.format(accuracy_score(y_test,y_pred)*100))
print('预测数据的精确率为:{:.4}%'.format(
      precision_score(y_test,y_pred)*100))
print('预测数据的召回率为:{:.4}%'.format(
      recall_score(y_test,y_pred)*100))
# print("训练数据的F1值为:", f1score_train)
print('预测数据的F1值为:',
      f1_score(y_test,y_pred))
print('预测数据的Cohen’s Kappa系数为:',
      cohen_kappa_score(y_test,y_pred))
# 打印分类报告
from sklearn.metrics import classification_report
print('预测数据的分类报告为:','\n',
      classification_report(y_test,y_pred))
from sklearn.metrics import precision_recall_curve
from sklearn import metrics
# 预测正例的概率
y_pred_prob=model.predict_proba(X_test)[:,1]
# y_pred_prob ,返回两列,第一列代表类别0,第二列代表类别1的概率
#https://blog.csdn.net/dream6104/article/details/89218239
fpr, tpr, thresholds = metrics.roc_curve(y_test,y_pred_prob, pos_label=2)
#pos_label,代表真阳性标签,就是说是分类里面的好的标签,这个要看你的特征目标标签是0,1,还是1,2
roc_auc = metrics.auc(fpr, tpr)  #auc为Roc曲线下的面积
# print(roc_auc)
plt.figure(figsize=(8,6))
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.plot(fpr, tpr, 'r',label='AUC = %0.2f'% roc_auc)
plt.legend(loc='lower right')
# plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1.1])
plt.ylim([0, 1.1])
plt.xlabel('False Positive Rate') #横坐标是fpr
plt.ylabel('True Positive Rate')  #纵坐标是tpr
plt.title('Receiver operating characteristic example')
plt.show()

结果展示:

image.png

image.png

image.png


果不其然,通过了特征选取的方式,模型的效果有了一定的改善,这里你也可以结合之前的博客文章:


机器学习框架及评估指标详解


特征选取之单变量统计、基于模型选择、迭代选择


将所有的指标都可以进行探究最后通过特征选取等方法,去增加模型的指标


其他模型尝试

多项式贝叶斯


适用于服从多项分布的特征数据


class sklearn.naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)

alpha:先验平滑因子,默认等于1,当等于1时表示拉普拉斯平滑。

fit_prior:是否去学习类的先验概率,默认是True

class_prior:各个类别的先验概率,如果没有指定,则模型会根据数据自动学习, 每个类别的先验概率相同,等于类标记总个数N分之一。


class_log_prior_:每个类别平滑后的先验概率

intercept_:是朴素贝叶斯对应的线性模型,其值和class_log_prior_相同

feature_log_prob_:给定特征类别的对数概率(条件概率)。 特征的条件概率=(指定类下指定特征出现的次数+alpha)/(指定类下所有特征出现次数之和+类的可能取值个数*alpha)

coef_: 是朴素贝叶斯对应的线性模型,其值和feature_log_prob相同

class_count_: 训练样本中各类别对应的样本数

feature_count_: 每个类别中各个特征出现的次数


伯努利朴素贝叶斯


用于多重伯努利分布的数据,即有多个特征,但每个特征都假设是一个二元 (Bernoulli, boolean) 变量


class sklearn.naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)

alpha:平滑因子,与多项式中的alpha一致。

binarize:样本特征二值化的阈值,默认是0。如果不输入,则模型会认为所有特征都已经是二值化形式了;如果输入具体的值,则模型会把大于该值的部分归为一类,小于的归为另一类。

fit_prior:是否去学习类的先验概率,默认是True

class_prior:各个类别的先验概率,如果没有指定,则模型会根据数据自动学习, 每个类别的先验概率相同,等于类标记总个数N分之一。


class_log_prior_:每个类别平滑后的先验对数概率。

feature_log_prob_:给定特征类别的经验对数概率。

class_count_:拟合过程中每个样本的数量。

feature_count_:拟合过程中每个特征的数量。


这些都是可以通过尝试进行探索,总的来说,纸上得来终觉浅,绝知此事要躬行。


优点缺点、参数总结

MultinomialNB 和 BernoulliNB 都只有一个参数 alpha,用于控制模型复杂度。


alpha 的工作原理是,算法向数据中添加 alpha 这么多的虚拟数据点,这些点对所有特征都取正值。这可以将统计数据“平滑化”(smoothing)。 alpha 越大,平滑化越强,模型复杂度就越低。


算法性能对 alpha 值的鲁棒性相对较好,也就是说, alpha 值对模型性能并不重要。但调整这个参数通常都会使精度略有提高。

GaussianNB 主要用于高维数据,而另外两种朴素贝叶斯模型则广泛用于稀疏计数数据,比

如文本。


MultinomialNB 的性能通常要优于 BernoulliNB,特别是在包含很多非零特征的数据集(即大型文档)上。朴素贝叶斯模型的许多优点和缺点都与线性模型相同。它的训练和预测速度都很快,训练

过程也很容易理解。


该模型对高维稀疏数据的效果很好,对参数的鲁棒性也相对较好。朴素贝叶斯模型是很好的基准模型,常用于非常大的数据集,在这些数据集上即使训练线性模型可能也要花费大量时间。


相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
25天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
55 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
14天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
1月前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
1月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
32 0

热门文章

最新文章