机器学习之算法案例公共自行车使用量预测

简介: 机器学习之算法案例公共自行车使用量预测

公共自行车使用量预测

公共自行车低碳、环保、健康,并且解决了交通中“最后一公里”的
痛点,在全国各个城市越来越受欢迎。本练习赛的数据取自于两个城市某
街道上的几处公共自行车停车桩。我们希望根据时间、天气等信息,预测
出该街区在一小时内的被借取的公共自行车的数量。
train.csv 训练集,文件大小 273kb
test.csv 预测集, 文件大小 179kb

公共自行车使用量预测
训练集中共有10000条样本,预测集中有7000条样本。
在这里插入图片描述

代码实现

import numpy as np
import pandas as pd
from sklearn.preprocessing import  StandardScaler
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error,r2_score
train = pd.read_csv('train.csv')  #读取数据
test = pd.read_csv('test.csv')
train = train.drop('id',axis=1)  #删除无关的数据 id列
test  = test.drop('id',axis=1)

train_x = train.iloc[:,train.columns != 'y']  #从数据集中取出训练的x
train_y = train.iloc[:,train.columns == 'y'] #从数据集中取出训练的y
train_y = np.array(train_y).flatten()  #将y展平

std = StandardScaler()  #对数据进行标准化
train_x = std.fit_transform(train_x)
test_x = std.transform(test)

svr = SVR()   #选择模型
svr.fit(train_x,train_y) #训练

ms = mean_squared_error(svr.predict(train_x),train_y) #进行模型评估
print("在训练集上的均方误差是:",ms)
r2 = r2_score(svr.predict(train_x),train_y)
print("在训练集上的r2值是:",r2)

test_y = svr.predict(test_x) #在测试集上对数据进行预测
print(test_y)

结果

在这里插入图片描述

目录
相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
17 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
23天前
|
存储 算法 搜索推荐
这些算法在实际应用中有哪些具体案例呢
【10月更文挑战第19天】这些算法在实际应用中有哪些具体案例呢
26 1
|
25天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
54 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
13天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
32 0
|
6月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
239 14
|
6月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
114 1
|
6月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
6月前
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
304 0