CAP
CAP 理论是分布式系统中的一个老生常谈的理论了,最早由 Eric Brewer 在一个讲座中提出。在这个讲座中,在传统 ACID 理论以及当时比较流行但是比较抽象的的设计指导理论 BASE 理论(当时的 BASE 理论还很抽象,直到好几年后才出现一份比较权威的被广泛接受的 BASE 理论完整解释和设计)的类比中,提出
- C(Consistency,一致性):在一个分布式的系统中,同一个数据的所有备份,在同一时刻是否有相同的值。也就是,对于同一个数据的读写,是否立刻对于所有副本都能看到一致的结果。一种比较常见的强一致性实现就是,在看到一致的结果之前,写请求不返回,读请求阻塞或者超时。
- A(Availability,可用性):在集群中一些节点故障时,集群还可以响应读写请求。
- P(Partition-tolerance,分区容忍性):分布式系统具有多个节点,如果节点间网络中断,就会造成分区。
并且提出了,CAP 并不能全部满足,而是一般选两个满足
之后,Seth Gilbert 以及 Nancy Lynch 在一篇 Notes 中,证明了 CAP 并不能同时都满足。并且,将 CAP 定义的更加清晰:
- C: 需要满足原子一致性,也就是任何读写都是具有原子性的,也就是对于同一个数据的写之后的读取,一定能读取到写的值,也就是最新的值
- A:对于所有成功的请求,都需要在有限的时间内返回,也就是成功请求是有效的,可终止的。
- P:可能节点间传输丢失一些消息。
CA 系统
也就是不允许分区的系统,也其实就不是分布式系统,而是单机系统。例如单机数据库,或者是共享存储数据库,比如 Aurora DB 类似的思路设计的数据库,共享同一份存储,上面建立不同的 MySQL 进程,一个 MySQL 读写,其他的只读,由于使用的同一块存储,并且只有一个 MySQL 进程写入,满足 ACID 的事务特性,能保证强一致性,以及可用性。
CP 系统
也就是不要求高可用性,但是要求强一致性的系统,哪怕当前业务不可用,也不能出现数据不一致的情况。并且,如果节点间传输消息丢失导致没有同步成功,或者重试,或者返回更新失败,回滚更新请求。
CP 的一种实际应用就是分布式锁,一般的,如果没有获取到锁,或者获取锁失败,我们都会选择阻塞等待,或者直接失败,而不会冒着可能会有并发危险而去执行业务。并且,分布式锁必须保持所有节点看到的锁状态一致,不能有差异,否则认为获取锁失败。
同时,大部分分布式数据库都是 CP 系统,但是他们的一致性协议方案是不同的,常见的例如 Paxos,2PC,3PC,RAFT等等。
AP 系统
也就是要求高可用性,但是不用强一致性的系统。在这种情况下,一旦分区发生,节点间的数据可能不一致,每个节点用自己的本地数据继续提供服务。这样情况下,可能会出现数据不一致,系统一般会实现最终一致性。也就是在分区结束后,通过一些机制将数据同步。
基本上具有多层缓存的系统,都是 AP 的系统设计。例如 DNS,客户端缓存,浏览器缓存以及进程内缓存等等。
一个 CP 与 AP 系统的对比
一个比较经典的例子就是 Zookeeper 作为注册中心和 Eureka 作为注册中心。
假设注册中心有两个接口,一个是注册实例,一个是读取实例。
如果以 Zookeeper 为注册中心,对于注册实例请求也就是更新请求,采用的是过半写以及 2 PC 的同步机制。
只有过半 2PC 更新成功,这个注册请求才成功,这样读取每个节点都会读取到这个更新请求,否则会回滚已经更新的节点。并且每个节点数据是一致的。如果过半的节点不可用,那么整个集群都不能处理注册实例请求以及读取实例的请求。这样保证的强一致性,但是可用性是打了折扣的。
如果以 Eureka 为注册中心,注册请求发到一个 Eureka 实例上之后,这个 Eureka 会转发到集群内其他 Eureka 节点。
即使某些节点失败,也不会将已经更新的回滚。并且无论集群内哪些 Eureka 挂了,也不会影响其他正常的 Eureka 继续服务工作,虽然可能读取到比较老的数据,以及有一些数据不一致。
目前的 CAP 理论
随着技术的不断发展以及理论的不断完善,我们发现,分区并不是会经常出现的情况,大部分情况下,如果我们忽略 P ,其实就是可以实现 CA 共存的情况。如果分区是可以感知的,纳闷我们可以提前制定响应策略,例如进入服务降级限制某些操作,通过恢复补偿逻辑修正数据不一致。
在 CAP 基础上演变的 PACELC 理论,就是针对这种情况的更为实际的指导意见。在出现分区的情况下,取前半部分,其实还是 CAP 理论。如果不出现分区的情况,也就是大部分的情况下,我们考虑 L(Latency,延迟) 与 C(Consistency 一致性)的权衡。