请你说下 CAP 理论并举例

简介: 请你说下 CAP 理论并举例

CAP


CAP 理论是分布式系统中的一个老生常谈的理论了,最早由 Eric Brewer一个讲座中提出。在这个讲座中,在传统 ACID 理论以及当时比较流行但是比较抽象的的设计指导理论 BASE 理论(当时的 BASE 理论还很抽象,直到好几年后才出现一份比较权威的被广泛接受的 BASE 理论完整解释和设计)的类比中,提出

  • C(Consistency,一致性):在一个分布式的系统中,同一个数据所有备份,在同一时刻是否有相同的值。也就是,对于同一个数据的读写,是否立刻对于所有副本都能看到一致的结果。一种比较常见的强一致性实现就是,在看到一致的结果之前,写请求不返回,读请求阻塞或者超时。
  • A(Availability,可用性):在集群中一些节点故障时,集群还可以响应读写请求
  • P(Partition-tolerance,分区容忍性):分布式系统具有多个节点,如果节点间网络中断,就会造成分区

并且提出了,CAP 并不能全部满足,而是一般选两个满足

之后,Seth Gilbert 以及 Nancy Lynch一篇 Notes 中,证明了 CAP 并不能同时都满足。并且,将 CAP 定义的更加清晰:

  • C: 需要满足原子一致性,也就是任何读写都是具有原子性的,也就是对于同一个数据的写之后的读取,一定能读取到写的值,也就是最新的值
  • A:对于所有成功的请求,都需要在有限的时间内返回,也就是成功请求是有效的,可终止的。
  • P:可能节点间传输丢失一些消息


CA 系统


也就是不允许分区的系统,也其实就不是分布式系统,而是单机系统。例如单机数据库,或者是共享存储数据库,比如 Aurora DB 类似的思路设计的数据库,共享同一份存储,上面建立不同的 MySQL 进程,一个 MySQL 读写,其他的只读,由于使用的同一块存储,并且只有一个 MySQL 进程写入,满足 ACID 的事务特性,能保证强一致性,以及可用性。


CP 系统


也就是不要求高可用性,但是要求强一致性的系统,哪怕当前业务不可用,也不能出现数据不一致的情况。并且,如果节点间传输消息丢失导致没有同步成功,或者重试,或者返回更新失败,回滚更新请求

CP 的一种实际应用就是分布式锁,一般的,如果没有获取到锁,或者获取锁失败,我们都会选择阻塞等待,或者直接失败,而不会冒着可能会有并发危险而去执行业务。并且,分布式锁必须保持所有节点看到的锁状态一致,不能有差异,否则认为获取锁失败。

同时,大部分分布式数据库都是 CP 系统,但是他们的一致性协议方案是不同的,常见的例如 Paxos,2PC,3PC,RAFT等等。


AP 系统


也就是要求高可用性,但是不用强一致性的系统。在这种情况下,一旦分区发生,节点间的数据可能不一致,每个节点用自己的本地数据继续提供服务。这样情况下,可能会出现数据不一致,系统一般会实现最终一致性。也就是在分区结束后,通过一些机制将数据同步。

基本上具有多层缓存的系统,都是 AP 的系统设计。例如 DNS,客户端缓存,浏览器缓存以及进程内缓存等等。


一个 CP 与 AP 系统的对比


一个比较经典的例子就是 Zookeeper 作为注册中心和 Eureka 作为注册中心。

假设注册中心有两个接口,一个是注册实例,一个是读取实例。

如果以 Zookeeper 为注册中心,对于注册实例请求也就是更新请求,采用的是过半写以及 2 PC 的同步机制。


image.png


只有过半 2PC 更新成功,这个注册请求才成功,这样读取每个节点都会读取到这个更新请求,否则会回滚已经更新的节点。并且每个节点数据是一致的。如果过半的节点不可用,那么整个集群都不能处理注册实例请求以及读取实例的请求。这样保证的强一致性,但是可用性是打了折扣的。

如果以 Eureka 为注册中心,注册请求发到一个 Eureka 实例上之后,这个 Eureka 会转发到集群内其他 Eureka 节点。


image.png


即使某些节点失败,也不会将已经更新的回滚。并且无论集群内哪些 Eureka 挂了,也不会影响其他正常的 Eureka 继续服务工作,虽然可能读取到比较老的数据,以及有一些数据不一致。


目前的 CAP 理论


随着技术的不断发展以及理论的不断完善,我们发现,分区并不是会经常出现的情况,大部分情况下,如果我们忽略 P ,其实就是可以实现 CA 共存的情况。如果分区是可以感知的,纳闷我们可以提前制定响应策略,例如进入服务降级限制某些操作,通过恢复补偿逻辑修正数据不一致。

在 CAP 基础上演变的 PACELC 理论,就是针对这种情况的更为实际的指导意见。在出现分区的情况下,取前半部分,其实还是 CAP 理论。如果不出现分区的情况,也就是大部分的情况下,我们考虑 L(Latency,延迟) 与 C(Consistency 一致性)的权衡。

相关文章
|
6月前
简述CAP理论,BASE理论
简述CAP理论,BASE理论
57 0
|
5月前
|
Nacos
什么是CAP理论?
**CAP原理摘要:** 分布式系统面临一致性(C)、可用性(A)和分区容错性(P)的选择。在无网络故障时,可同时满足三者。然而,由于网络故障的必然性,必须牺牲C或A来保证P。因此分为CP模型(强一致性,牺牲可用性)和AP模型(高可用性,牺牲一致性)。例如,Nacos中,临时实例遵循AP,持久实例遵循CP。
|
2月前
|
存储 NoSQL 关系型数据库
什么是 CAP 理论和 BASE 理论,看这一篇就够了
什么是 CAP 理论和 BASE 理论,看这一篇就够了
43 12
|
6月前
|
Nacos
分布式理论:CAP理论 BASE理论
分布式理论:CAP理论 BASE理论
44 2
|
搜索推荐 NoSQL 关系型数据库
分布式CAP理论和BASE理论
对于分布式系统的项目,使用中没有强制要求一定是CAP中要达到某几种,具体根据各自业务场景所需来制定相应的策略而选择适合的产品服务等。例如:支付订单场景中,由于分布式本身就在数据一致性上面很难保证,从A服务到B服务的订单数据有可能由于服务宕机或其他原因而造成数据不一致性。因此此类场景会酌情考虑:AP,不强制保证数据一致性,但保证数据最终一致性。
178 0
分布式CAP理论和BASE理论
|
数据库 搜索推荐 关系型数据库
CAP和BASE理论
CAP CAP是一个已经经过证实的理论:一个分布式系统最多只能同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance)这三项中的两项。
12513 0
|
Go 数据库
对CAP理论的理解
对CAP理论的理解
161 0
对CAP理论的理解
|
存储 缓存 NoSQL
|
存储 缓存 监控
分布式架构原理--CAP\Base理论及其应用
分布式架构原理专题: (演进过程及如何把应用从单机扩展的分布式;CDN加速静态文件访问;系统监控、容灾、存储动态扩容;架构设计及业务驱动分化;CAP\Base理论及其应用)
1155 4
分布式架构原理--CAP\Base理论及其应用