分布式理论:CAP理论 BASE理论

简介: 分布式理论:CAP理论 BASE理论

解决分布式事务问题,需要一些分布式系统的基础知识作为理论指导。


1. CAP定理


Consistency(一致性): 用户访问分布式系统中的任意节点,得到的数据必须一致 Availability(可用性):

用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。 Partition(分区):

因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。 tolerance(容错):

在集群出现分区时,整个系统也要持续对外提供服务

======结论: CP : 强一致性,弱可用性(牺牲部分机器的可用性,保证数据一致性) AP : 强可用性,弱一致性(牺牲一致性,保证可用性)


1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标。

  • Consistency(一致性)
  • Availability(可用性)
  • Partition tolerance (分区容错性)

它们的第一个字母分别是 C、A、P。

Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。


1.1 一致性

Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致。

比如现在包含两个节点,其中的初始数据是一致的:

当我们修改其中一个节点的数据时,两者的数据产生了差异:

要想保住一致性,就必须实现node01 到 node02的数据 同步:



## 1.2 可用性

Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。

如图,有三个节点的集群,访问任何一个都可以及时得到响应:

当有部分节点因为网络故障或其它原因无法访问时,代表节点不可用:


1.3 分区容错


Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。

Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务


1.4 矛盾

在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务有必须对外保证服务。因此Partition Tolerance不可避免。

当节点接收到新的数据变更时,就会出现问题了:

如果此时要保证一致性,就必须等待网络恢复,完成数据同步后,整个集群才对外提供服务,服务处于阻塞状态,不可用。


如果此时要保证可用性,就不能等待网络恢复,那node01、node02与node03之间就会出现数据不一致。


也就是说,在P一定会出现的情况下,A和C之间只能实现一个。


2. BASE理论


BASE理论是对CAP的一种解决思路,包含三个思想:


  • Basically Available (基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用。
  • Soft State(软状态) 在一定时间内,允许出现中间状态,比如临时的不一致状态。
  • Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致。


3. 解决分布式事务的思路


分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,有两种解决思路:


  • AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。
  • CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。


但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC):

这里的子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务


4. 扩展


ES 是 CP 为主,ES集群有节点发生故障 会剔除故障节点,数据会重新分配到其他节点,这个过程集群是不可用的保证数据的一致性。因此是低可用性、高一致性。

Eureka 是 AP。

Nacos 是有 CP 和 AP 都支持(默认AP)。

相关文章
|
1月前
|
关系型数据库 Apache 微服务
《聊聊分布式》分布式系统基石:深入理解CAP理论及其工程实践
CAP理论指出分布式系统中一致性、可用性、分区容错性三者不可兼得,必须根据业务需求进行权衡。实际应用中,不同场景选择不同策略:金融系统重一致(CP),社交应用重可用(AP),内网系统可选CA。现代架构更趋向动态调整与混合策略,灵活应对复杂需求。
|
1月前
|
消息中间件 运维 监控
《聊聊分布式》BASE理论 分布式系统可用性与一致性的工程平衡艺术
BASE理论是对CAP定理中可用性与分区容错性的实践延伸,通过“基本可用、软状态、最终一致性”三大核心,解决分布式系统中ACID模型的性能瓶颈。它以业务为导向,在保证系统高可用的同时,合理放宽强一致性要求,并借助补偿机制、消息队列等技术实现数据最终一致,广泛应用于电商、社交、外卖等大规模互联网场景。
|
6月前
|
NoSQL 关系型数据库 MySQL
分布式系统,从CAP定理说起
本文作者笠泱分享了对分布式系统及其核心理论的理解,包括分布式系统的概念、单体架构的局限性以及网络运算常见误区。重点解析了CAP定理(一致性、可用性、分区容错性三者不可兼得)和BASE理论(基本可用、软状态、最终一致性)。同时探讨了如何判定CP与AP系统,并结合Nacos、MySQL、Redis等实例分析其特性。最后总结分布式架构设计需关注高可用、高性能等六大指标,强调微服务与分布式解决方案的重要性。
547 14
|
缓存 Java 数据库
JAVA分布式CAP原则
JAVA分布式CAP原则
249 0
|
算法 前端开发
|
存储 NoSQL 关系型数据库
(二)漫谈分布式之理论篇:用刁钻的手法掰正你那学歪的CAP与BASE理论!
大多数讲分布式的资料、课程,虽然在一开始就会先讲述CAP理论,但大家仔细想想,你在做分布式项目时,落地过这个基础理论吗?相信包括我在内,以及90%以上的开发者,没有,至于为何,本文来从不一样的角度好好唠唠CAP,以及另一个著名的BASE理论~
317 0
|
消息中间件 缓存 算法
从ACID到BASE:分布式系统CAP理论深度解析
**CAP理论**是分布式系统设计的基础,指出一致性(Consistency)、可用性(Availability)和分区容忍性(Partition Tolerance)无法兼得。一致性确保所有节点数据相同,如ACID原则;可用性保证系统始终响应用户请求,常见优化包括BASE理论和多级缓存;分区容忍性则确保网络分区时仍能服务。设计时需根据业务需求权衡这三者。
343 4
|
缓存 搜索推荐 Java
Java面试题:简述CAP理论及其在分布式系统设计中的应用。请提供一个具体的例子,说明在系统设计中如何取舍一致性和可用性
Java面试题:简述CAP理论及其在分布式系统设计中的应用。请提供一个具体的例子,说明在系统设计中如何取舍一致性和可用性
185 0
|
缓存 NoSQL 数据库
分布式系统面试全集通第一篇(dubbo+redis+zookeeper----分布式+CAP+BASE+分布式事务+分布式锁)
分布式系统面试全集通第一篇(dubbo+redis+zookeeper----分布式+CAP+BASE+分布式事务+分布式锁)
281 0
|
存储 架构师 关系型数据库
分布式系统详解--基础知识(CAP)
分布式系统详解--基础知识(CAP)
544 0

热门文章

最新文章

下一篇
oss云网关配置