摘要
基于转移的成分句法分析主要分为两种:一种是自顶向下(top-down)的方法,按照前序遍历(pre-order)的顺序生成句法树。这种方法可以更好地利用全局信息,但是需要一个强大的编码器来对每个短语成分进行编码。一种是自底向上(bottom-up)的方法,按照后序遍历(post-order)的顺序生成句法树。这种方法可以充分利用子树的特征来进行分析,但是却无法利用全局信息。
本文的模型就对这两种方法进行了改进,采用中序遍历(in-order)的顺序来生成句法树。单模型最终取得了91.8的F1值(貌似也不是特别高?),采用监督重排序之后F1值提升到了93.6,采用半监督重排序之后F1值提升到了94.2。所以看起来还是重排序起了很大的作用。
基于转移的成分句法分析
首先简要介绍一下这三种基于转移的句法分析方法。
自底向上的转移系统
自底向上的转移系统是基于后序遍历的,例如对于下图这棵句法树,算法产生结点的顺序为3、4、5、2、7、9、10、8、6、11、1。
a图是未经二叉化的句法树,b图是二叉化之后的句法树,二叉化之后的结点要用l和r来区分头结点。其实不二叉化也是可以的,伯克利一帮人的做法就是用 来作为临时结点,构造树的时候去掉就行了。
句法分析系统如下:
每个时刻的状态用三元组 来表示,分别表示栈中元素、buffer的第一个元素在句子中的下标、句法分析结束标记。
系统一共有四个操作:
- SHIFT:从buffer中移进一个单词到栈里。
- REDUCE-L/R-X:将栈顶两个结点归约为一个父结点X。
- UNARY-X:将栈顶元素归约为一元结点X。
- FINISH:句法分析结束。
上面那个句法树按照该模型分析的话过程如下:
优缺点很显然,可以充分利用已生成的子树来对父结点的预测进行分析,但是不能利用全局信息(也就是其他子树、父结点等信息),并且需要提前进行二叉化(这点可以用临时结点标记来规避)。
自顶向下的转移系统
自顶向下的转移系统是基于前序遍历的,例如对于之前那棵句法树,算法产生结点的顺序为1、2、3、4、5、6、7、8、9、10、11。
句法分析系统如下:
系统一共有三个操作:
- SHIFT:从buffer中移进一个单词到栈里。
- NT-X:对一个父结点生成出它的一个子结点X。
- REDUCE:将栈顶的若干个结点归约为一个结点,并且全部出栈,注意它们的父结点这时已经在栈顶了。
上面那个句法树按照该模型分析的话过程如下:
优缺点也很显然,可以充分利用全局信息,但是因为预测子树的时候,子树还没有生成,所以无法利用子树的特征来进行分析,所以需要提前对句子的每个短语进行编码。
采用中序遍历的转移系统
为了协调上面的两种问题,本文提出了一种基于中序遍历的转移系统。
其实采用中序遍历也符合人们的直觉判断,比如你读到一个单词“like”,脑子里首先就会想到,这个可能和下面短语共同组成了动词短语VP,然后接着往下看,果然印证了你的猜想。
中序遍历就是采用这种思想的,例如对于之前那棵句法树,算法产生结点的顺序为3、2、4、5、1、7、6、9、8、10。
句法分析系统如下:
系统一共有四个操作:
- SHIFT:从buffer中移进一个单词到栈里。
- PJ-X:向栈里移进父结点X,来作为栈顶结点的父结点。
- REDUCE:将栈顶的若干个结点归约为一个结点,并且全部出栈,注意它们的父结点在出栈元素的倒数第二个。然后再将父结点入栈。
- FINISH:句法分析结束。
上面那个句法树按照该模型分析的话过程如下:
该转移系统还有很多变体。对于短语(S, a, b, c, d),可以令它在栈中S结点之前的子结点个数为 k ,例如对于上面的中序转移系统,栈里存放顺序是“a S b c d”,那么 ,如果栈里存放顺序是“a b S c d”,那么 。而对于自底向上的转移系统, 就是正无穷,对于自顶向下的转移系统, k 就是0。