《大数据存储:MongoDB实战指南》一1.4 什么是MongoDB

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

本节书摘来异步社区《大数据存储:MongoDB实战指南》一书中的第1章,第1.4节,作者: 郭远威 , 彭文波 责编: 陈冀康,更多章节内容可以访问云栖社区“异步社区”公众号查看。####1.4 什么是MongoDB
大数据存储:MongoDB实战指南
MongoDB是一个可扩展、开源、表结构自由、用C++语言编写且面向文档的数据库,旨在为Web应用程序提供高性能、高可用性且易扩展的数据存储解决方案。

MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富、最像关系数据库的NoSQL数据库;它支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,可以实现类似关系数据里单表查询的绝大部分功能,而且还支持对数据建立索引。

MongoDB不是在实验室里面凭空想象出来的产品,它是10gen公司的工程师根据实际的需求而设计的,主要基于以下几点考虑,需要一种新的数据库技术来满足数据存储层的水平扩展,而且要容易开发,能够存储海量的数据;一种非关系的结构是使数据库能支持水平扩展的最好方案;文档数据模型(BSON)容易编码和管理,将内部相关的数据放在一起能够提高数据库的操作性能。

MongoDB服务端可运行在Linux、Windows或OS X平台,支持32位和64位应用,默认监听端口为27017。MongoDB的内存管理依赖于操作系统的自动内存管理机制,而且通过Map对数据文件进行内存映射,因此推荐MongoDB运行在64位平台上,否则在32位模式受虚拟内存地址大小的限制,而且运行时支持的最大文件尺寸也只能为2GB。当然对于测试和开发环境我们可以在32位模式下进行,生产环境上最好是部署在64位上。

MongoDB发展迅速,无疑是当前NoSQL领域的人气王,就算与传统的关系数据库比较也不甘落后,数据库知识网站DB-Engines根据搜索结果对223个数据库系统进行流行度排名,2014年7月的数据库流行度排行榜前12名如图1-1所示。

我们可以看到前三甲依然是Oracle、MySQL和微软的SQL Server,值得关注的是,第五名MongoDB与第四名PostgreSQL之间的积分差距已不足1分。前四名由于历史原因都是关系数据库,许多大型的垄断行业仍然在使用这些关系数据库。


1

MongoDB只通过6年时间就将公司市值发展到12亿美元,其成果相当于著名开源公司Red Hat 20年的发展。MongoDB的成功之路,一大部分归功于Web开发者。作为一个面向文档数据库,在许多场景下它都优于RDBMS,同时还可以获得非常高的读写性能。此外,动态、灵活的模式更可以让用户在商用服务器上轻松地进行横向扩展。

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
7月前
|
监控 NoSQL 大数据
【MongoDB】Replica 频繁插入大数据的问题
【4月更文挑战第2天】【MongoDB】Replica 频繁插入大数据的问题
|
4月前
|
运维 监控 NoSQL
【MongoDB 复制集秘籍】Secondary 同步慢怎么办?深度解析与实战指南,让你的数据库飞速同步!
【8月更文挑战第24天】本文通过一个具体案例探讨了MongoDB复制集中Secondary成员同步缓慢的问题。现象表现为数据延迟增加,影响业务运行。经分析,可能的原因包括硬件资源不足、网络状况不佳、复制日志错误等。解决策略涵盖优化硬件(如增加内存、升级CPU)、调整网络配置以减少延迟以及优化MongoDB配置(例如调整`oplogSize`、启用压缩)。通过这些方法可有效提升同步效率,保证系统的稳定性和性能。
100 4
|
4月前
|
C# UED 开发者
WPF与性能优化:掌握这些核心技巧,让你的应用从卡顿到丝滑,彻底告别延迟,实现响应速度质的飞跃——从布局到动画全面剖析与实例演示
【8月更文挑战第31天】本文通过对比优化前后的方法,详细探讨了提升WPF应用响应速度的策略。文章首先分析了常见的性能瓶颈,如复杂的XAML布局、耗时的事件处理、不当的数据绑定及繁重的动画效果。接着,通过具体示例展示了如何简化XAML结构、使用后台线程处理事件、调整数据绑定设置以及利用DirectX优化动画,从而有效提升应用性能。通过这些优化措施,WPF应用将更加流畅,用户体验也将得到显著改善。
267 1
|
4月前
|
JSON NoSQL MongoDB
MongoDB Schema设计实战指南:优化数据结构,提升查询性能与数据一致性
【8月更文挑战第24天】MongoDB是一款领先的NoSQL数据库,其灵活的文档模型突破了传统关系型数据库的限制。它允许自定义数据结构,适应多样化的数据需求。设计MongoDB的Schema时需考虑数据访问模式、一致性需求及性能因素。设计原则强调简洁性、查询优化与合理使用索引。例如,在构建博客系统时,可以通过精心设计文章和用户的集合结构来提高查询效率并确保数据一致性。正确设计能够充分发挥MongoDB的优势,实现高效的数据管理。
73 3
|
4月前
|
监控 NoSQL 大数据
【MongoDB复制集瓶颈】高频大数据写入引发的灾难,如何破局?
【8月更文挑战第24天】在MongoDB复制集中,主节点处理所有写请求,从节点通过复制保持数据一致性。但在大量高频数据插入场景中,会出现数据延迟增加、系统资源过度消耗、复制队列积压及从节点性能不足等问题,影响集群性能与稳定性。本文分析这些问题,并提出包括优化写入操作、调整写入关注级别、采用分片技术、提升从节点性能以及持续监控调优在内的解决方案,以确保MongoDB复制集高效稳定运行。
93 2
|
4月前
|
安全 C# 数据安全/隐私保护
WPF安全加固全攻略:从数据绑定到网络通信,多维度防范让你的应用固若金汤,抵御各类攻击
【8月更文挑战第31天】安全性是WPF应用程序开发中不可或缺的一部分。本文从技术角度探讨了WPF应用面临的多种安全威胁及防护措施。通过严格验证绑定数据、限制资源加载来源、实施基于角色的权限管理和使用加密技术保障网络通信安全,可有效提升应用安全性,增强用户信任。例如,使用HTML编码防止XSS攻击、检查资源签名确保其可信度、定义安全策略限制文件访问权限,以及采用HTTPS和加密算法保护数据传输。这些措施有助于全面保障WPF应用的安全性。
60 0
|
4月前
|
C# 开发者 Windows
全面指南:WPF无障碍设计从入门到精通——让每一个用户都能无障碍地享受你的应用,从自动化属性到焦点导航的最佳实践
【8月更文挑战第31天】为了确保Windows Presentation Foundation (WPF) 应用程序对所有用户都具备无障碍性,开发者需关注无障碍设计原则。这不仅是法律要求,更是社会责任,旨在让技术更人性化,惠及包括视障、听障及行动受限等用户群体。
87 0
|
7月前
|
存储 NoSQL 大数据
【MongoDB 专栏】MongoDB 在大数据场景下的应用
【5月更文挑战第11天】MongoDB,适用于大数据时代,以其灵活数据模型、高可扩展性和快速性能在大数据场景中脱颖而出。它处理海量、多类型数据,支持高并发,并在数据分析、日志处理、内容管理和物联网应用中广泛应用。电商和互联网公司的案例展示了其在扩展性和业务适应性上的优势,但同时也面临数据一致性、资源管理、数据安全和性能优化的挑战。
699 1
【MongoDB 专栏】MongoDB 在大数据场景下的应用
|
6月前
|
分布式计算 DataWorks NoSQL
DataWorks操作报错合集之从MongoDB同步数据到MaxCompute(ODPS)时,出现报错,该怎么解决
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
DataWorks操作报错合集之从MongoDB同步数据到MaxCompute(ODPS)时,出现报错,该怎么解决
|
6月前
|
存储 数据采集 NoSQL
DTS在迁移大数据量的MongoDB数据库时如何保证数据的准确性和完整性?
【6月更文挑战第4天】DTS在迁移大数据量的MongoDB数据库时如何保证数据的准确性和完整性?
147 1