WGCNA 简明指南|1. 基因共表达网络构建及模块识别

简介: WGCNA 简明指南|1. 基因共表达网络构建及模块识别

参考


本文主要参考官方指南Tutorials for WGCNA R package (ucla.edu),详细内容可参阅官方文档。


其它资料:


WGCNA - 文集 - 简书 (jianshu.com)


WGCNA分析,简单全面的最新教程 - 简书 (jianshu.com)


简介


加权基因共表达网络分析 (WGCNA, Weighted correlation network analysis)是用来描述不同样品之间基因关联模式的系统生物学方法,可以用来鉴定高度协同变化的基因集, 并根据基因集的内连性和基因集与表型之间的关联鉴定候补生物标记基因或治疗靶点。简而言之,就是将基因划分为若干个模块,探究表型数据与基因模块之间的相关关系,并找到模块中的hub基因。


数据导入、清洗及预处理

数据导入

示例数据下载:https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/FemaleLiver-Data.zip

# BiocManager::install("WGCNA") 
library('WGCNA')
# 在读入数据时,遇到字符串之后,不将其转换为factors,仍然保留为字符串格式
options(stringsAsFactors = FALSE)
# 导入示例数据
femData = read.csv("LiverFemale3600.csv")
# 查看数据
dim(femData)
names(femData)
> dim(femData)
[1] 3600  143
> names(femData)
  [1] "substanceBXH"   "gene_symbol"    "LocusLinkID"    "ProteomeID"    
  [5] "cytogeneticLoc" "CHROMOSOME"     "StartPosition"  "EndPosition"   
  [9] "F2_2"           "F2_3"           "F2_14"          "F2_15"  
  ...
# 提取样本-基因表达矩阵
datExpr0 = as.data.frame(t(femData[, -c(1:8)]))
names(datExpr0) = femData$substanceBXH
rownames(datExpr0) = names(femData)[-c(1:8)]
> datExpr0[1:6,1:6]
      MMT00000044 MMT00000046 MMT00000051 MMT00000076 MMT00000080 MMT00000102
F2_2   -0.0181000     -0.0773 -0.02260000    -0.00924 -0.04870000  0.17600000
F2_3    0.0642000     -0.0297  0.06170000    -0.14500  0.05820000 -0.18900000
F2_14   0.0000644      0.1120 -0.12900000     0.02870 -0.04830000 -0.06500000
F2_15  -0.0580000     -0.0589  0.08710000    -0.04390 -0.03710000 -0.00846000
F2_19   0.0483000      0.0443 -0.11500000     0.00425  0.02510000 -0.00574000
F2_20  -0.1519741     -0.0938 -0.06502607    -0.23610  0.08504274 -0.01807182

检查过度缺失值和离群样本

# 检查缺失值太多的基因和样本
gsg = goodSamplesGenes(datExpr0, verbose = 3);
gsg$allOK

如果最后一个语句返回TRUE,则所有的基因都通过了检查。如果没有,我们就从数据中剔除不符合要求的基因和样本。

if(!gsg$allOK)
{
  #(可选)打印被删除的基因和样本名称:
  if(sum(!gsg$goodGenes)>0)
    printFlush(paste("Removinggenes:",paste(names(datExpr0)[!gsg$goodGenes], collapse =",")));
  if(sum(!gsg$goodSamples)>0)
    printFlush(paste("Removingsamples:",paste(rownames(datExpr0)[!gsg$goodSamples], collapse =",")));
  #删除不满足要求的基因和样本:
  datExpr0 = datExpr0[gsg$goodSamples, gsg$goodGenes]
}

接下来,我们对样本进行聚类(与稍后的聚类基因相反),看看是否有任何明显的异常值。

sampleTree = hclust(dist(datExpr0), method ="average");
# 绘制样本树:打开一个尺寸为12 * 9英寸的图形输出窗口
# 可对窗口大小进行调整
sizeGrWindow(12,9)
# 如要保存可运行下面语句
# pdf(file="Plots/sampleClustering.pdf",width=12,height=9);
par(cex = 0.6)
par(mar =c(0,4,2,0))
plot(sampleTree, main ="Sampleclusteringtodetectoutliers",sub="", xlab="", cex.lab = 1.5,
cex.axis= 1.5, cex.main = 2)

image.png

Fig1a.样本树状图

Fig1a可见有一个异常值。可以手动或使用自动方法删除它。选择一个**高度(height)**进行切割将删除异常样本,比如15(Fig1b),并在该高度使用分支切割

# 绘制阈值切割线
abline(h = 15,col="red");
# 确定阈值线下的集群
clust = cutreeStatic(sampleTree, cutHeight = 15, minSize = 10)
table(clust)
# clust1包含想要留下的样本.
keepSamples = (clust==1)
datExpr = datExpr0[keepSamples, ]
nGenes =ncol(datExpr)
nSamples =nrow(datExpr)

image.png

Fig1b.红线表示切割高度

datExpr包含用于网络分析的表达数据。


载入临床特征数据

将样本信息与临床特征进行匹配。

traitData =read.csv("ClinicalTraits.csv")
dim(traitData)
names(traitData)
# 删除不必要的列.
allTraits = traitData[, -c(31, 16)]
allTraits = allTraits[,c(2, 11:36) ]
dim(allTraits)
names(allTraits)
# 形成一个包含临床特征的数据框
femaleSamples =rownames(datExpr)
traitRows =match(femaleSamples, allTraits$Mice)
datTraits = allTraits[traitRows, -1]
rownames(datTraits) = allTraits[traitRows, 1]
collectGarbage() # 释放内存

现在在variabledatExpr中有了表达数据,在变量datTraits中有了相应的临床特征。在进行网络构建和模块检测之前,将临床特征与样本树状图的关系可视化。


# 重新聚类样本
sampleTree2 = hclust(dist(datExpr), method ="average")
# 将临床特征值转换为连续颜色:白色表示低,红色表示高,灰色表示缺失
traitColors = numbers2colors(datTraits, signed = FALSE);
# 在样本聚类图的基础上,增加临床特征值热图
plotDendroAndColors(sampleTree2, traitColors,
                    groupLabels =names(datTraits),
                    main ="Sample dendrogramand trait heatmap")

image.png

image.png

Figure 2: Clustering dendrogram of samples based on their Euclidean distance.

自动构建网络及识别模块

确定合适的软阈值:网络拓扑分析

The soft thresholding, is a value used to power the correlation of the genes to that threshold. The assumption on that by raising the correlation to a power will reduce the noise of the correlations in the adjacency matrix. To pick up one threshold use the pickSoftThreshold function, which calculates for each power if the network resembles to a scale-free graph. The power which produce a higher similarity with a scale-free network is the one you should use.


WGCNA: What is soft thresholding? (bioconductor.org)

# 设置软阈值调参范围
powers =c(c(1:10),seq(from = 12, to=20,by=2))
# 网络拓扑分析
sft = pickSoftThreshold(datExpr, powerVector = powers, verbose = 5)
# 绘图
sizeGrWindow(9, 5)
# 1行2列排列
par(mfrow =c(1,2));
cex1 = 0.9;
# 无标度拓扑拟合指数与软阈值的函数(左图)
plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
     xlab="SoftThreshold(power)",ylab="ScaleFreeTopologyModelFit,signedR^2",type="n",
     main =paste("Scaleindependence"));
text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
     labels=powers,cex=cex1,col="red");
# 这条线对应于h的R^2截止点
abline(h=0.90,col="red")
# Mean Connectivity与软阈值的函数(右图)
plot(sft$fitIndices[,1], sft$fitIndices[,5],
     xlab="SoftThreshold(power)",ylab="MeanConnectivity", type="n",
     main =paste("Meanconnectivity"))
text(sft$fitIndices[,1], sft$fitIndices[,5],labels=powers, cex=cex1,col="red")

image.png

Figure 3:各种软阈值的网络拓扑分析

我们选择power 6,这是无标度拓扑拟合指数曲线在达到较高值时趋于平缓的最低 power。


一步构建网络和识别模块

net = blockwiseModules(datExpr,power= 6,
                       TOMType ="unsigned", minModuleSize = 30,
                       reassignThreshold = 0, mergeCutHeight = 0.25,
                       numericLabels = TRUE, pamRespectsDendro = FALSE,
                       saveTOMs = TRUE,
                       saveTOMFileBase ="femaleMouseTOM",
                       verbose = 3)

deepSplit 参数调整划分模块的敏感度,值越大,越敏感,得到的模块就越多,默认是2;


minModuleSize 参数设置最小模块的基因数,值越小,小的模块就会被保留下来;


mergeCutHeight 设置合并相似性模块的距离,值越小,就越不容易被合并,保留下来的模块就越多

# 查看识别了多少模块以及模块大小
table(net$colors)
> table(net$colors)
  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18 
 99 609 460 409 316 312 221 211 157 123 106 100  94  91  77  76  58  47  34

表明有18个模块,按大小递减顺序标记为1到18,大小从609到34个基因。标签0为所有模块之外的基因。

# 可视化模块
sizeGrWindow(12, 9)
# 将标签转换为颜色
mergedColors = labels2colors(net$colors)
# 绘制树状图和模块颜色图
plotDendroAndColors(net$dendrograms[[1]], mergedColors[net$blockGenes[[1]]],
                    "Modulecolors",
                    dendroLabels = FALSE, hang = 0.03,
                    addGuide = TRUE, guideHang = 0.05)

image.png

Figure 4:基因的聚类树状图,具有不同的基于拓扑重叠,以及指定的模块颜色

保存模块赋值和模块特征基因信息,以供后续分析。

moduleLabels = net$colors
moduleColors = labels2colors(net$colors)
MEs = net$MEs;
geneTree = net$dendrograms[[1]];
save(MEs, moduleLabels, moduleColors, geneTree,
     file="FemaleLiver-02-networkConstruction-auto.RData")
相关文章
|
3月前
|
前端开发 JavaScript 开发者
JavaScript:构建动态网络的引擎
JavaScript:构建动态网络的引擎
|
5月前
|
机器学习/深度学习 算法 量子技术
GQNN框架:让Python开发者轻松构建量子神经网络
为降低量子神经网络的研发门槛并提升其实用性,本文介绍一个名为GQNN(Generalized Quantum Neural Network)的Python开发框架。
114 4
GQNN框架:让Python开发者轻松构建量子神经网络
|
3月前
|
人工智能 监控 数据可视化
如何破解AI推理延迟难题:构建敏捷多云算力网络
本文探讨了AI企业在突破算力瓶颈后,如何构建高效、稳定的网络架构以支撑AI产品化落地。文章分析了典型AI IT架构的四个层次——流量接入层、调度决策层、推理服务层和训练算力层,并深入解析了AI架构对网络提出的三大核心挑战:跨云互联、逻辑隔离与业务识别、网络可视化与QoS控制。最终提出了一站式网络解决方案,助力AI企业实现多云调度、业务融合承载与精细化流量管理,推动AI服务高效、稳定交付。
|
8月前
|
边缘计算 安全 算法
阿里云CDN:构建全球化智能加速网络的数字高速公路
阿里云CDN构建全球化智能加速网络,拥有2800多个边缘节点覆盖67个国家,实现毫秒级网络延迟。其三级节点拓扑结构与智能路由系统,结合流量预测模型,确保高命中率。全栈式加速技术包括QUIC协议优化和Brotli压缩算法,保障安全与性能。五层防御机制有效抵御攻击,行业解决方案涵盖视频、物联网及游戏等领域,支持新兴AR/VR与元宇宙需求,持续推动数字内容分发技术边界。
528 13
|
2月前
|
机器学习/深度学习 分布式计算 Java
Java与图神经网络:构建企业级知识图谱与智能推理系统
图神经网络(GNN)作为处理非欧几里得数据的前沿技术,正成为企业知识管理和智能推理的核心引擎。本文深入探讨如何在Java生态中构建基于GNN的知识图谱系统,涵盖从图数据建模、GNN模型集成、分布式图计算到实时推理的全流程。通过具体的代码实现和架构设计,展示如何将先进的图神经网络技术融入传统Java企业应用,为构建下一代智能决策系统提供完整解决方案。
317 0
|
3月前
|
机器学习/深度学习 算法 搜索推荐
从零开始构建图注意力网络:GAT算法原理与数值实现详解
本文详细解析了图注意力网络(GAT)的算法原理和实现过程。GAT通过引入注意力机制解决了图卷积网络(GCN)中所有邻居节点贡献相等的局限性,让模型能够自动学习不同邻居的重要性权重。
470 0
从零开始构建图注意力网络:GAT算法原理与数值实现详解
|
5月前
|
监控 安全 Go
使用Go语言构建网络IP层安全防护
在Go语言中构建网络IP层安全防护是一项需求明确的任务,考虑到高性能、并发和跨平台的优势,Go是构建此类安全系统的合适选择。通过紧密遵循上述步骤并结合最佳实践,可以构建一个强大的网络防护系统,以保障数字环境的安全完整。
132 12
|
6月前
|
JSON 编解码 API
Go语言网络编程:使用 net/http 构建 RESTful API
本章介绍如何使用 Go 语言的 `net/http` 标准库构建 RESTful API。内容涵盖 RESTful API 的基本概念及规范,包括 GET、POST、PUT 和 DELETE 方法的实现。通过定义用户数据结构和模拟数据库,逐步实现获取用户列表、创建用户、更新用户、删除用户的 HTTP 路由处理函数。同时提供辅助函数用于路径参数解析,并展示如何设置路由器启动服务。最后通过 curl 或 Postman 测试接口功能。章节总结了路由分发、JSON 编解码、方法区分、并发安全管理和路径参数解析等关键点,为更复杂需求推荐第三方框架如 Gin、Echo 和 Chi。
|
8月前
|
人工智能 供应链 安全
2025 年网络法律论坛 | 应对安全风险,构建韧性举措
2025年查尔斯顿网络法律论坛汇聚法律、网络安全与保险行业专家,探讨全球威胁态势、人工智能应用及监管变化等议题。主旨演讲揭示非对称威胁与供应链漏洞,强调透明度和协作的重要性。小组讨论聚焦AI合理使用、监管热点及网络保险现状,提出主动防御与数据共享策略。论坛呼吁跨领域合作,应对快速演变的网络安全挑战,构建更具韧性的防御体系。
221 1
2025 年网络法律论坛 | 应对安全风险,构建韧性举措
|
9月前
|
存储 人工智能 编解码
Deepseek 3FS解读与源码分析(2):网络通信模块分析
2025年2月28日,DeepSeek 正式开源其颠覆性文件系统Fire-Flyer 3FS(以下简称3FS),重新定义了分布式存储的性能边界。本文基于DeepSeek发表的技术报告与开源代码,深度解析 3FS 网络通信模块的核心设计及其对AI基础设施的革新意义。
Deepseek 3FS解读与源码分析(2):网络通信模块分析