R 中几个常见的合并数据集方法

简介: R 中几个常见的合并数据集方法

Merge with dplyr()


Dplyr提供了一种很好的、方便的组合数据集的方法。


Left_join()


right_join()


inner_join()


full_join()


首先,我们建立两个数据集。表1包含两个变量,ID和y,而表2包含了ID和z。在每种情况下,我们都需要有一个关键变量。在本例中,ID是关键变量。该函数将在两个表中寻找相同的值,并将返回值添加到表1的右侧。

library(dplyr)
df_primary <- tribble(
  ~ID, ~y,
   "A", 5,
   "B", 5,
   "C", 8,
   "D", 0,
  "F", 9)
df_secondary <- tribble(
  ~ID, ~z,
   "A", 30,
   "B", 21,
   "C", 22,
   "D", 25,
   "E", 29)
> df_primary
# A tibble: 5 x 2
  ID        y
  <chr> <dbl>
1 A         5
2 B         5
3 C         8
4 D         0
5 F         9
> df_secondary
# A tibble: 5 x 2
  ID        z
  <chr> <dbl>
1 A        30
2 B        21
3 C        22
4 D        25
5 E        29
left_join()

合并两个数据集的最常见方法是使用left_join()函数。我们可以从下面的图片中看到,关键变量完美地匹配了两个数据集中的行A、B、C和D。但是,剩下E和F。我们如何看待这两个观察结果?使用left_join(),我们将在原始表中保留所有变量,而不考虑目标表中没有匹配到的变量。在我们的示例中,变量E不存在于表1中。因此,该行将被删除。变量F来自原始表,因此它将保留在left_join()之后,并在列z显示为NA。如下图所示:

image.png


210510_1

left_join(df_primary, df_secondary, by ='ID')
> left_join(df_primary, df_secondary, by ='ID')
# A tibble: 5 x 3
  ID      y   z
  <chr> <dbl> <dbl>
1 A         5    30
2 B         5    21
3 C         8    22
4 D         0    25
5 F         9    NA

right_join()

right_join()函数的工作方式与left_join()完全相同。唯一的区别是被删除的行。right_join()将目标数据集中的变量E存在于新表中,并为列y取值NA。

image.png


210510_2

right_join(df_primary, df_secondary, by = 'ID')
> right_join(df_primary, df_secondary, by = 'ID')
# A tibble: 5 x 3
  ID      y   z
  <chr> <dbl> <dbl>
1 A         5    30
2 B         5    21
3 C         8    22
4 D         0    25
5 E        NA    29

inner_join()


当两个数据集不匹配时,我们可以考虑只返回两个数据集中存在的行。inner_join()可以排除不匹配的行。

image.png


210510_3

inner_join(df_primary, df_secondary, by ='ID')
> inner_join(df_primary, df_secondary, by ='ID')
# A tibble: 4 x 3
  ID      y   z
  <chr> <dbl> <dbl>
1 A         5    30
2 B         5    21
3 C         8    22
4 D         0    25

full_join()


full_join()函数保留所有的观察结果,并用NA替换缺失的值。

image.png


210510_4

full_join(df_primary, df_secondary, by = 'ID')
> full_join(df_primary, df_secondary, by = 'ID')
# A tibble: 6 x 3
  ID      y   z.y
  <chr> <dbl> <dbl>
1 A         5    30
2 B         5    21
3 C         8    22
4 D         0    25
5 F         9    NA
6 E        NA    29

Multiple keys pairs


如果有多个关键变量时,则需一起使用。

image.png


210510_5

df_primary <- tribble(
  ~ID, ~year, ~items,
  "A", 2015,3,
  "A", 2016,7,
  "A", 2017,6,
  "B", 2015,4,
  "B", 2016,8,
  "B", 2017,7,
  "C", 2015,4,
  "C", 2016,6,
  "C", 2017,6)
df_secondary <- tribble(
  ~ID, ~year, ~prices,
  "A", 2015,9,
  "A", 2016,8,
  "A", 2017,12,
  "B", 2015,13,
  "B", 2016,14,
  "B", 2017,6,
  "C", 2015,15,
  "C", 2016,15,
  "C", 2017,13)
left_join(df_primary, df_secondary, by = c('ID', 'year'))
> left_join(df_primary, df_secondary, by = c('ID', 'year'))
# A tibble: 9 x 4
  ID     year items prices
  <chr> <dbl> <dbl>  <dbl>
1 A      2015     3      9
2 A      2016     7      8
3 A      2017     6     12
4 B      2015     4     13
5 B      2016     8     14
6 B      2017     7      6
7 C      2015     4     15
8 C      2016     6     15
9 C      2017     6     13
相关文章
|
7月前
单细胞分析|映射和注释查询数据集
单细胞分析|映射和注释查询数据集
102 3
|
7月前
|
数据处理 开发工具 git
coco2017数据集转换为yolo格式(记录过程)
最近做一个yolov5的落地应用项目,用的anylabeling打标,需要将coco2017的数据集转为yolo格式,故写下记录过程!
|
SQL 测试技术
|
2月前
|
PyTorch 算法框架/工具
数据集学习笔记(三):调用不同数据集获取trainloader和testloader
本文介绍了如何使用PyTorch框架调用CIFAR10数据集,并获取训练和测试的数据加载器(trainloader和testloader)。
45 4
数据集学习笔记(三):调用不同数据集获取trainloader和testloader
|
4月前
|
机器学习/深度学习 人工智能 前端开发
如何正确拆分数据集?常见的三种方法总结
如何正确拆分数据集?常见的三种方法总结
|
4月前
|
机器学习/深度学习 JavaScript 前端开发
深度学习必备:对数据集的拆分、根据拆分图片拆分labels、对全部标注标签进行区间检查
使用JavaScript代码或浏览器扩展可以一次性在浏览器中打开多个相同的标签页。
|
4月前
|
Python
python 随机划分图片数据集以及移动标注
这篇文章提供了一个Python脚本,用于随机划分图片数据集为训练集和测试集,并将对应的标注文件移动到相应的子文件夹中,以减少训练使用的数据量。
|
项目管理 vr&ar 图形学
怎么将两个模型合并成一个?
当你需要将多个3D模型组合为一个整体,简化管理、提高渲染性能或实现特定的效果时,合并模型是一个有用的工具和技术。
339 1
|
XML 数据可视化 数据格式
【数据集显示标注】VOC文件结构+数据集标注可视化+代码实现
【数据集显示标注】VOC文件结构+数据集标注可视化+代码实现
455 0
|
机器学习/深度学习 索引 Python
ML之FE:特征工程中常用的五大数据集划分方法(特殊类型数据分割,如时间序列数据分割法)讲解及其代码
ML之FE:特征工程中常用的五大数据集划分方法(特殊类型数据分割,如时间序列数据分割法)讲解及其代码