论如何减少降噪导致图像失真

简介: 论如何减少降噪导致图像失真

前言


  图像去噪有时候会在去除噪声的同时伴随着去除了图像的原始信息。尤其是在去噪过程中,纹理很容易变形和平滑,因为它们无法与噪声区分开来。这里提出了一种新的去噪图像增强框架。通过将去噪后的图像与噪声输入进行融合,恢复丢失的图像信息。


该融合方法采用包含两个数据项(噪声项和去噪项)和一个稀疏约束项的代价优化,以有效抑制主成分分析(PCA)域中的噪声。噪声和去噪后的融合权重在很大程度上取决于局部区域特征。主成分分析系数和特征向量由另一种方法估计,并用于估计增强版本。该方法能有效地改善图像的纹理和结构信息。



降噪副作用


  由于噪声往往成为许多图像处理任务的障碍,因此在预处理过程中通常需要进行降噪处理。在计算机视觉领域已有无数大神在此方向实践许多,提出了多种实现的理论途径。然而,去噪不可避免地会扭曲原始图像,因为很难将噪声图像与噪声图像完全分离。它有一个固有的性能界限,导致一定程度的过度平滑,尤其是在纹理区域。


  纹理去噪一直是一项具有挑战性的任务,因为它的高频信息不容易与噪声区分开来。因此,现有的方法在纹理去噪方面仍然存在困难,在纹理上的性能仍然不足。最近的迭代去噪技术增加了去噪图像和去噪图像之间的差异,从而对图像进行去噪。


  它们的总和被反复去噪,以缓解过度平滑的副作用。通过这样的迭代过程,纹理在一定程度上得到了保留。然而,这些技术对图像中的所有区域进行各向同性去噪,而不考虑区域特征。去噪后的图像可以进一步增强。为了有效地利用噪声图像的优势,需要考虑图像的区域特征




减少失真


  我们提出了一个新的框架来进一步提高去噪图像的纹理质量。我们提出的方法的目标是通过融合噪声和去噪图像来估计纹理增强的图像。该估计过程是一个稀疏约束优化问题,具有两个数据项的噪声和降噪图像。


  在计算机视觉领域中,噪声图像具有丰富的原始纹理,对纹理区域的增强效果较好。另一方面,去噪后的图像在平面和边缘等其他区域具有更好的去噪效果,并且去噪效果更好,几乎不丢失原始信息。纹理概率被测量并反映在成本函数中的组合权重中。


为了抑制融合纹理中的噪声,在主成分分析(PCA)变换域中建立了一个代价函数,其中噪声与原始纹理更加不同。使用成本优化方法估计增强图像的主成分分析系数。为了将得到的主成分分析系数准确地再次转换为空间特征向量,还需要添加主成分分析特征向量。需要一种新的迭代特征向量估计方法,在单个框架内交替估计特征向量和系数。




优化思路


  一般来说,对带噪图像进行去噪往往会导致原始信息的丢失和去噪。这种现象特别发生在纹理区域,因为纹理本质上与噪声相似。我们在抑制噪声的同时还需要对噪声图像和去噪图像进行平滑纹理恢复。这就形成了一个成本优化问题,通过融合噪声和去噪图像来估计去噪图像的增强版本。



相关文章
|
机器学习/深度学习 传感器 算法
【交互式阈值二进制图像】采用彩色或单色图像通过交互/手动方式阈值单色图像或彩色图像的单个色带研究(Matlab代码实现)
【交互式阈值二进制图像】采用彩色或单色图像通过交互/手动方式阈值单色图像或彩色图像的单个色带研究(Matlab代码实现)
|
27天前
|
机器学习/深度学习 存储 编解码
什么是图像噪声?是如何产生的?图像去噪技术都有哪些?
图像噪声是在图像采集、传输和处理过程中产生的像素值异常现象,主要由光子计数统计、电子偏移和放大器噪声等因素引起。噪声影响图像质量,降低信噪比,使特征难以识别。图像去噪技术包括传统方法(如空间域滤波、频域滤波、图像压缩和超糅合)和基于深度学习的方法(如卷积神经网络、残差网络和生成对抗网络),旨在有效去除噪声,提高图像质量。
|
4月前
|
算法
基于小波变换的图像自适应增强算法
基于小波变换的图像自适应增强算法
18 0
|
6月前
|
算法 计算机视觉
图像处理之调整亮度与对比度
图像处理之调整亮度与对比度
64 6
|
6月前
|
算法 计算机视觉
图像处理之基于阈值模糊
图像处理之基于阈值模糊
30 0
|
7月前
|
文字识别 算法 计算机视觉
图像倾斜校正算法的MATLAB实现:图像倾斜角检测及校正
图像倾斜校正算法的MATLAB实现:图像倾斜角检测及校正
|
7月前
|
计算机视觉
图像降噪方法:
图像降噪方法: 图像降噪是图像处理中的一项重要任务,可以通过减少图像中的噪声来提高图像的质量。常见的降噪方法包括: - 均值滤波:对图像中的每个像素取平均值,降低噪声。 - 中值滤波:对图像中的每个像素取邻域内像素的中值,降低脉冲噪声和椒盐噪声。
326 1
|
机器学习/深度学习 传感器 算法
【图像误差测量】测量 2 张图像之间的差异,并测量图像质量(Matlab代码实现)
【图像误差测量】测量 2 张图像之间的差异,并测量图像质量(Matlab代码实现)
|
传感器 测试技术 计算机视觉
Baumer工业相机堡盟相机VLXT-90M.I如何做平场校正阴影校正:消除图像明暗不均匀现象
Baumer工业相机堡盟相机VLXT-90M.I如何做平场校正阴影校正:消除图像明暗不均匀现象
163 0
|
算法
基于高分辨率时频分析的单通道地震数据自动噪声衰减方法(Matlab代码实现)
基于高分辨率时频分析的单通道地震数据自动噪声衰减方法(Matlab代码实现)