一文浅谈深度学习泛化能力

简介: 一文浅谈深度学习泛化能力

一、DNN泛化能力的问题


论文主要探讨的是, 为什么过参数的神经网络模型还能有不错的泛化性?即并不是简单记忆训练集,而是从训练集中总结出一个通用的规律,从而可以适配于测试集(泛化能力)。



以经典的决策树模型为例, 当树模型学习数据集的通用规律时:一种好的情况,假如树第一个分裂节点时,刚好就可以良好区分开不同标签的样本,深度很小,相应的各叶子上面的样本数是够的(即统计规律的数据量的依据也是比较多的),那这会得到的规律就更有可能泛化到其他数据。(即:拟合良好, 有泛化能力)。



另外一种较差的情况,如果树学习不好一些通用的规律,为了学习这个数据集,那树就会越来越深,可能每个叶子节点分别对应着少数样本(少数据带来统计信息可能只是噪音),最后,死记硬背地记住所有数据(即:过拟合 无泛化能力)。我们可以看到过深(depth)的树模型很容易过拟合。


那么过参数化的神经网络如何达到良好的泛化性呢?


二、 DNN泛化能力的原因


本文是从一个简单通用的角度解释——在神经网络的梯度下降优化过程上,探索泛化能力的原因:


我们总结了梯度相干理论 :来自不同样本的梯度产生相干性,是神经网络能有良好的泛化能力原因。当不同样本的梯度在训练过程中对齐良好,即当它们相干时,梯度下降是稳定的,可以很快收敛,并且由此产生的模型可以有良好的泛化性。否则,如果样本太少或训练时间过长,可能无法泛化。



基于该理论,我们可以做出如下解释。


2.1 宽度神经网络的泛化性


更宽的神经网络模型具有良好的泛化能力。这是因为,更宽的网络都有更多的子网络,对比小网络更有产生梯度相干的可能,从而有更好的泛化性。换句话说,梯度下降是一个优先考虑泛化(相干性)梯度的特征选择器,更广泛的网络可能仅仅因为它们有更多的特征而具有更好的特征。


论文原文:Generalization and width. Neyshabur et al. [2018b] found that wider networks generalize better. Can we now explain this? Intuitively, wider networks have more sub-networks at any given level, and so the sub-network with maximum coherence in a wider network may be more coherent than its counterpart in a thinner network, and hence generalize better. In other words, since—as discussed in Section 10—gradient descent is a feature selector that prioritizes well-generalizing (coherent) features, wider networks are likely to have better features simply because they have more features. In this connection, see also the Lottery Ticket Hypothesis [Frankle and Carbin, 2018]

论文链接:https://github.com/aialgorithm/Blog

但是个人觉得,这还是要区分下网络输入层/隐藏层的宽度。特别对于数据挖掘任务的输入层,由于输入特征是通常是人工设计的,需要考虑下做下特征选择(即减少输入层宽度),不然直接输入特征噪音,对于梯度相干性影响不也是有干扰的。


2.2 深度神经网络的泛化性


越深的网络,梯度相干现象被放大,有更好的泛化能力。



在深度模型中,由于层之间的反馈加强了有相干性的梯度,存在相干性梯度的特征(W6)和非相干梯度的特征(W1)之间的相对差异在训练过程中呈指数放大。从而使得更深的网络更偏好相干梯度,从而更好泛化能力。



2.3 早停(early-stopping)


通过早停我们可以减少非相干梯度的过多影响,提高泛化性。


在训练的时候,一些容易样本比其他样本(困难样本)更早地拟合。训练前期,这些容易样本的相干梯度做主导,并很容易拟合好。训练后期,以困难样本的非相干梯度主导了平均梯度g(wt),从而导致泛化能力变差,这个时候就需要早停。



(注:简单的样本,是那些在数据集里面有很多梯度共同点的样本,正由于这个原因,大多数梯度对它有益,收敛也比较快。)


2.4 全梯度下降 VS 学习率


我们发现全梯度下降也可以有很好的泛化能力。此外,仔细的实验表明随机梯度下降并不一定有更优的泛化,但这并不排除随机梯度更易跳出局部最小值、起着正则化等的可能性。


Based on our theory, finite learning rate, and mini-batch stochasticity are not necessary for generalization


我们认为较低的学习率可能无法降低泛化误差,因为较低的学习率意味着更多的迭代次数(与早停相反)。


Assuming a small enough learning rate, as training progresses, the generalization gap cannot decrease. This follows from the iterative stability analysis of training: with 40 more steps, stability can only degrade. If this is violated in a practical setting, it would point to an interesting limitation of the theory


2.5 L2、L1正则化


目标函数加入L2、L1正则化,相应的梯度计算, L1正则项需增加的梯度为sign(w) ,L2梯度为w。以L2正则为例,相应的梯度W(i+1)更新公式为:



我们可以把“L2正则化(权重衰减)”看作是一种“背景力”,可将每个参数推近于数据无关的零值 ( L1容易得到稀疏解,L2容易得到趋近0的平滑解) ,来消除在弱梯度方向上影响。只有在相干梯度方向的情况下,参数才比较能脱离“背景力”,基于数据完成梯度更新。



2.6 梯度下降算法的进阶


  • Momentum 、Adam等梯度下降算法


Momentum 、Adam等梯度下降算法,其参数W更新方向不仅由当前的梯度决定,也与此前累积的梯度方向有关(即,保留累积的相干梯度的作用)。这使得参数中那些梯度方向变化不大的维度可以加速更新,并减少梯度方向变化较大的维度上的更新幅度,由此产生了加速收敛和减小震荡的效果。


  • 抑制弱梯度方向的梯度下降


我们可以通过优化批次梯度下降算法,来抑制弱梯度方向的梯度更新,进一步提高了泛化能力。比如,我们可以使用梯度截断(winsorized gradient descent),排除梯度异常值后的再取平均值。或者取梯度的中位数代替平均值,以减少梯度异常值的影响。



小结


文末说两句,对于深度学习的理论,有兴趣可以看下论文提及的相关研究。个人水平有限,不足之处还望指教,有什么见解,欢迎学习群相互讨论下。

相关文章
|
4月前
|
机器学习/深度学习 数据可视化 网络架构
增强深度学习模型的可解释性和泛化能力的方法研究
【8月更文第15天】在深度学习领域,模型的准确率和预测能力是衡量模型好坏的重要指标。然而,随着模型复杂度的增加,它们往往变得越来越难以理解,这限制了模型在某些关键领域的应用,例如医疗诊断、金融风险评估等。本文将探讨如何通过几种方法来增强深度学习模型的可解释性,同时保持或提高模型的泛化能力。
445 2
|
4月前
|
机器学习/深度学习 算法框架/工具 Python
过拟合的终结者:深度学习中的正则化技术,如何成为模型泛化能力的超级英雄
【8月更文挑战第7天】深度学习模型虽强大却易过拟合,尤其是在数据有限时。正则化技术通过在训练中引入惩罚项来提升模型泛化能力。L2正则化(权重衰减)限制权重大小;L1正则化生成稀疏权重。例如,在Keras中可通过`kernel_regularizer=regularizers.l2(0.01)`实现L2正则化。Dropout通过随机丢弃神经元减少共适应。数据增强增加训练数据多样性。此外,标签平滑和最大模态正则化等新策略进一步增强了模型的泛化能力。
76 0
|
4月前
|
机器学习/深度学习 监控
深度学习中的正则化技术:防止过拟合与提升泛化能力
【8月更文挑战第6天】在深度学习领域,模型的复杂性往往与其性能成正比,但同时也带来了过拟合的风险。本文将深入探讨正则化技术在深度学习中的应用,如何通过这些技术平衡模型复杂度与泛化能力,以及它们对模型性能的具体影响。我们将从理论到实践,分析不同正则化方法的优势和局限,为深度学习研究者和实践者提供指导。
156 10
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的正则化技术:提升模型泛化能力的关键策略探索AI的奥秘:深度学习与神经网络
【8月更文挑战第27天】在深度学习的探索旅程中,我们常常遭遇模型过拟合的困境,就像是一位探险者在茫茫林海中迷失方向。本文将作为你的指南针,指引你理解并应用正则化技术,这一强大的工具能够帮助我们的模型更好地泛化于未见数据,就如同在未知领域中找到正确的路径。我们将从简单的L1和L2正则化出发,逐步深入到更为复杂的丢弃(Dropout)和数据增强等策略,为你的深度学习之旅提供坚实的支持。
|
5月前
|
机器学习/深度学习 PyTorch TensorFlow
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
|
机器学习/深度学习 算法
独家 | 如何解决深度学习泛化理论
我们可以从最新的关于深度学习“炼金术”的悖论研究中了解一二。 动机 深度学习目前正被用于方方面面。但是,人们经常批评它缺乏一个基础理论,能够完全解释其为什么能如此神奇。最近,神经信息处理系统大会(NIPS)的时间测试奖(Test-of-Time)得主将深度学习比作“炼金术”。
3012 0
|
4天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
28 5
|
7天前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何利用这些原理进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习模型进行图像分类。最后,我们将讨论深度学习在图像识别领域的未来发展趋势和挑战。