9.1 简介
本章将介绍 R 中的字符串处理。包括字符串的基本工作原理,以及如何手工创建字符串,但本章的重点是正则表达式(regular expression,regexp)。正则表达式的用处非常大,字符串通常包含的是非结构化或半结构化数据,正则表达式可以用简练的语言来描述字符串中的模式。
9.2 字符串基础
可以使用单引号或双引号来创建字符串。与其他语言不同,单引号和双引号在 R 中没有区别。我们推荐使用 ",除非你想要创建包含多个 " 的一个字符串:
string1 <- "This is a string" string2 <- 'To put a "quote" inside a string, use single quotes'
如果忘记了结尾的引号,你会看到一个 +,这是一个续行符:
> "This is a string without a closing quote +
如果遇到了这种情况,可以按 Esc 键,然后重新输入。
如果想要在字符串中包含一个单引号或双引号,可以使用 \ 对其进行“转义”:
double_quote <- "\"" # or '"' single_quote <- '\'' # or "'"
这意味着,如果想要在字符串中包含一个反斜杠,就需要使用两个反斜杠:\\。
字符串的打印形式与其本身的内容不是相同的,因为打印形式中会显示出转义字 符。如果想要查看字符串的初始内容,可以使用 writelines() 函数:
x <- c("\"", "\\") x > [1] "\"" "\\" writeLines(x) > " > \
还有其他几种特殊字符。最常用的是换行符 \n 和制表符 \t,你可以使用 ?'"' 或 ?"'" 调 出帮助文件来查看完整的特殊字符列表。
多个字符串通常保存在一个字符向量中,使用 c() 函数来创建字符向量:
c("one", "two", "three") > [1] "one" "two" "three"
9.2.1 字符串长度
stringr 中的函数比R基础包中的字符串处理函数名称更直观,并且都是以 str_ 开头的。例如,str_length() 函数可以返回字符串中的字符数量:
str_length(c("a", "R for data science", NA)) > [1] 1 18 NA
9.2.2 字符串组合
要想组合两个或更多字符串,可以使用 str_c() 函数:
str_c("x", "y") > [1] "xy" str_c("x", "y", "z") > [1] "xyz"
可以使用 sep 参数来控制字符串间的分隔方式:
str_c("x", "y", sep = ", ") > [1] "x, y"
和多数 R 函数一样,缺失值是可传染的。如果想要将它们输出为 “NA”,可以使用 str_ replace_na():
x <- c("abc", NA) str_c("|-", x, "-|") > [1] "|-abc-|" NA str_c("|-", str_replace_na(x), "-|") > [1] "|-abc-|" "|-NA-|"
如以上代码所示,str_c() 函数是向量化的,它可以自动循环短向量,使得其与最长的向量具有相同的长度:
str_c("prefix-", c("a", "b", "c"), "-suffix") > [1] "prefix-a-suffix" "prefix-b-suffix" "prefix-c-suffix"
长度为 0 的对象会被无声无息地丢弃。这与 if 结合起来特别有用:
name <- "Hadley" time_of_day <- "morning" birthday <- FALSE str_c( "Good ", time_of_day, " ", name, if (birthday) " and HAPPY BIRTHDAY", # birthday 为True时,才会打印后面的语句 "." ) > [1] "Good morning Hadley."
要想将字符向量合并为字符串,可以使用 collapse() 函数:
str_c(c("x", "y", "z"), collapse = ", ") > [1] "x, y, z"
9.2.3 字符串取子集
可以使用 str_sub() 函数来提取字符串的一部分。除了字符串参数外,str_sub() 函数中还 有 start 和 end 参数,它们给出了子串的位置(包括 start 和 end 在内):
x <- c("Apple", "Banana", "Pear") str_sub(x, 1, 3) # 开始、结束的位置参数 > [1] "App" "Ban" "Pea" # 负数表示从后往前数 str_sub(x, -3, -1) > [1] "ple" "ana" "ear"
注意,即使字符串过短,str_sub() 函数也不会出错,它将返回尽可能多的字符:
str_sub("a", 1, 5) > [1] "a"
还可以使用 str_sub() 函数的赋值形式来修改字符串:
str_sub(x, 1, 1) <- str_to_lower(str_sub(x, 1, 1)) #函数将文本转换为小写 x > [1] "apple" "banana" "pear"
9.3 使用正则表达式进行模式匹配
我们通过 str_view() 和 str_view_all() 函数来学习正则表达式。这两个函数接受一个字符向量和一个正则表达式,并显示出它们是如何匹配的。
9.3.1 基础匹配
最简单的模式是精确匹配字符串 :
x <- c("apple", "banana", "pear") str_view(x, "an")
另一个更复杂一些的模式是使用 .,它可以匹配任意字符(除了换行符):
str_view(x, ".a.")
但是,如果 . 可以匹配任意字符,那么如何匹配字符 . 呢?你需要使用一个**“转义”符号来告诉正则表达式实际上就是要匹配 . 这个字符,而不是使用 . 来匹配其他字符。和字符串一样,正则表达式也使用反斜杠**来去除某些字符的特殊含义。因此,如果要匹配 .,那么你需要的正则表达式就是 \.。遗憾的是,这样做会带来一个问题。因为我们使用字符串来表示正则表达 式,而且 \ 在字符串中也用作转义字符,所以正则表达式 \. 的字符串形式应是 \\.:
# 要想建立正则表示式,我们需要使用\\ dot <- "\\." # 实际上表达式本身只包含一个\: writeLines(dot) #> \. # 这个表达式告诉R搜索一个. str_view(c("abc", "a.c", "bef"), "a\\.c")
如果 \ 在正则表达式中用作转义字符,那么如何匹配 \ 这个字符呢?我们还是需要去除其特殊意义,建立形式为 \\ 的正则表达式。要想建立这样的正则表达式,我们需要使用一个字符串,其中还需要对 \ 进行转义。这意味着要想匹配字符 \,我们需要输入 “\\\\”—— 你需要 4 个反斜杠来匹配 1 个反斜杠!
x <- "a\\b" writeLines(x) > a\b str_view(x, "\\\\")
9.3.2 锚点
默认情况下,正则表达式会匹配字符串的任意部分。有时我们需要在正则表达式中设置锚点,以便 R 从字符串的开头或末尾进行匹配。我们可以设置两种锚点:
^ 从字符串开头进行匹配。
$ 从字符串末尾进行匹配。
x <- c("apple", "banana", "pear") str_view(x, "^a") str_view(x, "a$")
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WMEMTfXq-1614859189166)(F:\HJH\mzbj\9\15.png)]
始于权力(^),终于金钱($)
如果想要强制正则表达式匹配一个完整字符串,那么可以同时设置 ^ 和 $ 这两个锚点:
x <- c("apple pie", "apple", "apple cake") str_view(x, "apple")
str_view(x, "^apple$")
还可以使用 \b 来匹配单词间的边界。例如,为了避免匹配到 summarize、summary、rowsum 等,我们会使用 \bsum\b 进行搜索。
9.3.3 字符类与字符选项
很多特殊模式可以匹配多个字符。我们已经介绍过 .,它可以匹配除换行符外的任意字符。 还有其他 4 种常用的字符类。
\d 可以匹配任意数字。
\s 可以匹配任意空白字符(如空格、制表符和换行符)。
[abc] 可以匹配 a、b 或 c
[^abc] 可以匹配除 a、b、c 外的任意字符。
牢记,要想创建包含 \d 或 \s 的正则表达式,你需要在字符串中对 \ 进行转义,因此需 要输入 “\\d” 或 “\\s”。
你还可以使用字符选项创建多个可选的模式。例如,abc|d..f 可以匹配 abc 或 deaf。注 意,因为 | 的优先级很低,所以 abc|xyz 匹配的是 abc 或 xyz,而不是 abcyz 或 abxyz。与 数学表达式一样,如果优先级让人感到困惑,那么可以使用括号让其表达得更清晰一些:
str_view(c("grey", "gray"), "gr(e|a)y")
9.3.4 重复
正则表达式的另一项强大功能是,其可以控制一个模式能够匹配多少次。
?:0 次或 1 次。
+: 1 次或多次。
*:0 次或多次。
x <- "1888 is the longest year in Roman numerals: MDCCCLXXXVIII" str_view(x, "CC?")
str_view(x, "CC+")
str_view(x, 'C[LX]+')
注意,这些运算符的优先级非常高,因此使用 colou?r 既可以匹配 color,也可以匹配 colour。这意味着很多时候需要使用括号,比如 bana(na)+。
还可以精确设置匹配的次数。
{n}:匹配 n 次。
{n,}:匹配 n 次或更多次。
{,m}:最多匹配 m 次。
{n, m}:匹配 n 到 m 次。
str_view(x, "C{2}") str_view(x, "C{2}") str_view(x, "C{2}") #大家自行观察
默认的匹配方式是“贪婪的”:正则表达式会匹配尽量长的字符串。通过在正则表达式后面添加一个 ?,你可以将匹配方式更改为“懒惰的”,即匹配尽量短的字符串。
str_view(x, 'C{2,3}?')
str_view(x, 'C[LX]+?')
9.3.5 分组与回溯引用
前面学习了括号可以用于消除复杂表达式中的歧义。括号还可以定义“分组”, 你可以通过回溯引用(如 \1、\2 等)来引用这些分组。例如,以下的正则表达式可以找出名称中有重复的一对字母的所有水果:
fruit <- c("banana","coconut","cocumber","jujube","papaya","salal berry") str_view(fruit, "(..)\\1", match = TRUE)