基本数据结构和算法在Linux内核中使用

简介:

基本数据结构和算法在Linux内核中使用

gaufunga day ago

搬运工

Linux内核(源代码的链接在github)

1.链表双向链表无锁链表

2.B+ 树,这是一些你无法在教科书上找到的说明。

一个相对简单的B+树的实现。我把它作为一个学习练习来帮助理解B+树是如何工作的。这同样也被证明是有用的。 ...

一个在教科书中并不常见的技巧。最小的值在右侧而不是在左侧。所有在一个节点里用到的槽都在左侧,所有没有用到的槽包含了空值(NUL)。大多数操作只简单地遍历所有的槽一次并在第一个空值时(NUL)终止。

3.优先排序列表 用于 互斥量、驱动等等。

4.红黑树用于调度、虚拟内存管理、追踪文件描述符和目录项等。

5.区间树

6.树用于内存管理,NFS相关查询和网络相关功能。

根树的一个通用的用处是存储指针到结构页中。

7.优先级堆,如其名称的教科书实现,用于cgroup。

《简单的基于CLR的只插入的,含有指针的定长优先级堆》第七章

8.哈希函数,参考了Knuth和一篇论文。

Knuth建议,用乘法哈希的机器字来表示接近黄金比例的素数的最大整数。Chuck Lever验证了该技术的有效性:

http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf

这些素数的选择是位稀疏的,他们可以通过移位和加法操作,而不必使用乘法器,乘法器是很慢的。

9.有的代码,比如这个驱动,实现了他们自己的哈希函数。 使用了一种旋转哈希算法的哈希函数 Knuth, D. 《计算机程序设计艺术, 卷 3: 排序与搜索》, 第6、7章. Addison Wesley, 1973

10.哈希表用于实现inode、文件系统完整性检测等等。

11.位数组用于处理标志位、中断等等。并在Knuth那本书的卷4中阐述。

12.信号量自旋锁

13.二分查找用于中断处理,寄存器缓存查询等等。

14.B树的二分查找

15.深度优先搜索被广泛地用于目录配置中。

执行一个修改过的命名空间树的深度优先遍历,以指定的start_handle节点开始(及结束)。回调函数会在任何一个参数匹配的节点被发现时被调用。如果回调函数返回了一个非0值,搜索将会立即终止并且将其返回给调用者。

16.广度优先搜索用于检测运行时锁定的正确性。

17.链表中的归并排序用于垃圾收集、文件系统管理等等。

18.冒泡排序在一个驱动库中也有一个令人惊讶的实现。

19.Knuth-Morris-Pratt 字符串匹配,

根据Knuth、Morris和Pratt[1]实现了一个线性时间的字符串匹配算法。他们的算法避免了转换函数的显式地计算DELTA。对于长度为n的文本,其匹配时间是O(n),对于长度为m的模式(pattern),仅使用一个辅助函数PI[1 . .m],预先计算模式的时间为O(m)。数组PI允许转换函数DELTA被实时有效地计算。粗略地说,对于任何状态"q"= 0,1,…、m和在SIGMA中的任何字符"a",PI["q"]的值包含的信息是独立的"a"并需要计算DELTA("q","a") [2]。既然PI只有m个记录,而DELTA有O(m |SIGMA|)个记录,在预处理时间计算PI而不是DELTA的时候,我们可以节省一个因数|SIGMA|

[1] Cormen, Leiserson, Rivest, Stein,算法介绍,第二版,MIT出版社

[2] 见有限自动机原理

20.Boyer-Moore 模式匹配是在找替代品时的参考和建议。

实现了Boyer-Moore字符串匹配算法:

[1] 《一个快速的字符串搜索算法》,R.S. Boyer and Moore.计算机通信协会,20(10), 1977, pp. 762-772.http://www.cs.utexas.edu/users/moore/publications/fstrpos.pdf

[2] 《准确的字符串匹配算法手册》,Thierry Lecroq, 2004 http://www-igm.univ-mlv.fr/~lecroq/string/string.pdf

注:由于Boyer-Moore(BM)从右到左搜索匹配,仍然有可能匹配分布在多个块,在这种情况下该算法并没有优势。

如果你希望确保这样的事情永远不会发生,那使用Knuth-Pratt-Morris(KMP)实现。总之,根据您的设置适当地选择字符串搜索算法。

如果你正在用文本搜索器进行过滤,NIDS或任何类似的注重安全的目的,那么使用KMP。否则,如果你真的关心性能,并且你对数据包进行分类以使用服务质量(QoS)政策,当你不介意匹配可能分布分散,那么用BM。

相关文章
|
13天前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
51 4
|
17天前
|
缓存 算法 Linux
深入理解Linux内核调度器:公平性与性能的平衡####
真知灼见 本文将带你深入了解Linux操作系统的核心组件之一——完全公平调度器(CFS),通过剖析其设计原理、工作机制以及在实际系统中的应用效果,揭示它是如何在众多进程间实现资源分配的公平性与高效性的。不同于传统的摘要概述,本文旨在通过直观且富有洞察力的视角,让读者仿佛亲身体验到CFS在复杂系统环境中游刃有余地进行任务调度的过程。 ####
37 6
|
2天前
|
缓存 网络协议 Linux
深入探索Linux操作系统的内核优化策略####
本文旨在探讨Linux操作系统内核的优化方法,通过分析当前主流的几种内核优化技术,结合具体案例,阐述如何有效提升系统性能与稳定性。文章首先概述了Linux内核的基本结构,随后详细解析了内核优化的必要性及常用手段,包括编译优化、内核参数调整、内存管理优化等,最后通过实例展示了这些优化技巧在实际场景中的应用效果,为读者提供了一套实用的Linux内核优化指南。 ####
11 1
|
8天前
|
算法 Linux 开发者
Linux内核中的锁机制:保障并发控制的艺术####
本文深入探讨了Linux操作系统内核中实现的多种锁机制,包括自旋锁、互斥锁、读写锁等,旨在揭示这些同步原语如何高效地解决资源竞争问题,保证系统的稳定性和性能。通过分析不同锁机制的工作原理及应用场景,本文为开发者提供了在高并发环境下进行有效并发控制的实用指南。 ####
|
16天前
|
缓存 资源调度 安全
深入探索Linux操作系统的心脏——内核配置与优化####
本文作为一篇技术性深度解析文章,旨在引领读者踏上一场揭秘Linux内核配置与优化的奇妙之旅。不同于传统的摘要概述,本文将以实战为导向,直接跳入核心内容,探讨如何通过精细调整内核参数来提升系统性能、增强安全性及实现资源高效利用。从基础概念到高级技巧,逐步揭示那些隐藏在命令行背后的强大功能,为系统管理员和高级用户打开一扇通往极致性能与定制化体验的大门。 --- ###
45 9
|
15天前
|
缓存 负载均衡 Linux
深入理解Linux内核调度器
本文探讨了Linux操作系统核心组件之一——内核调度器的工作原理和设计哲学。不同于常规的技术文章,本摘要旨在提供一种全新的视角来审视Linux内核的调度机制,通过分析其对系统性能的影响以及在多核处理器环境下的表现,揭示调度器如何平衡公平性和效率。文章进一步讨论了完全公平调度器(CFS)的设计细节,包括它如何处理不同优先级的任务、如何进行负载均衡以及它是如何适应现代多核架构的挑战。此外,本文还简要概述了Linux调度器的未来发展方向,包括对实时任务支持的改进和对异构计算环境的适应性。
37 6
|
16天前
|
缓存 Linux 开发者
Linux内核中的并发控制机制:深入理解与应用####
【10月更文挑战第21天】 本文旨在为读者提供一个全面的指南,探讨Linux操作系统中用于实现多线程和进程间同步的关键技术——并发控制机制。通过剖析互斥锁、自旋锁、读写锁等核心概念及其在实际场景中的应用,本文将帮助开发者更好地理解和运用这些工具来构建高效且稳定的应用程序。 ####
35 5
|
16天前
|
算法 Unix Linux
深入理解Linux内核调度器:原理与优化
本文探讨了Linux操作系统的心脏——内核调度器(Scheduler)的工作原理,以及如何通过参数调整和代码优化来提高系统性能。不同于常规摘要仅概述内容,本摘要旨在激发读者对Linux内核调度机制深层次运作的兴趣,并简要介绍文章将覆盖的关键话题,如调度算法、实时性增强及节能策略等。
|
17天前
|
存储 监控 安全
Linux内核调优的艺术:从基础到高级###
本文深入探讨了Linux操作系统的心脏——内核的调优方法。文章首先概述了Linux内核的基本结构与工作原理,随后详细阐述了内核调优的重要性及基本原则。通过具体的参数调整示例(如sysctl、/proc/sys目录中的设置),文章展示了如何根据实际应用场景优化系统性能,包括提升CPU利用率、内存管理效率以及I/O性能等关键方面。最后,介绍了一些高级工具和技术,如perf、eBPF和SystemTap,用于更深层次的性能分析和问题定位。本文旨在为系统管理员和高级用户提供实用的内核调优策略,以最大化Linux系统的效率和稳定性。 ###
|
16天前
|
Java Linux Android开发
深入探索Android系统架构:从Linux内核到应用层
本文将带领读者深入了解Android操作系统的复杂架构,从其基于Linux的内核到丰富多彩的应用层。我们将探讨Android的各个关键组件,包括硬件抽象层(HAL)、运行时环境、以及核心库等,揭示它们如何协同工作以支持广泛的设备和应用。通过本文,您将对Android系统的工作原理有一个全面的认识,理解其如何平衡开放性与安全性,以及如何在多样化的设备上提供一致的用户体验。