python绘制正态分布及三大抽样分布的概率密度图像(二)

简介: python绘制正态分布及三大抽样分布的概率密度图像(二)

5、t分布的概率密度函数及其图象

1)t分布的概率密度函数及其图象


image.png

2)python绘制t分布的概率密度函数图象

x = np.linspace(-5,5,100000)
y = stats.t.pdf(x_t,2)
plt.plot(x,y,c="orange")
plt.title('t分布的概率密度函数')
plt.tight_layout()
plt.savefig("t分布的概率密度函数",dpi=300)


结果如下:

image.png


3)python绘制t分布和正态分布的概率密度函数对比图

x_norm = np.linspace(-5,5,100000)
y_norm = stats.norm.pdf(x_norm,0,1)
plt.plot(x_norm,y_norm,c="black")
color = ["green","darkblue","orange"]
x_t = np.linspace(-5,5,100000)
for i in range(1,4,1):
    y_t = stats.t.pdf(x_t,i)
    plt.plot(x_t,y_t,c=color[int(i-1)])
plt.title('t分布和正态分布的概率密度函数对比图')
plt.tight_layout()
plt.savefig("t分布和正态分布的概率密度函数对比图",dpi=300)


结果如下:

image.png

总结:从图中可以看出,t分布的概率密度函数和正态分布的概率密度函数都是偶函数(左右对称的)。t分布随着自由度的增加,就越来越接近正态分布,即t分布的极限分布也是正态分布。

 


6、F分布的概率密度函数及其图象

1)F分布的概率密度函数及其图象

image.png


2)python绘制F分布的概率密度函数图象

x = np.linspace(-1,8,100000)
y1 = stats.f.pdf(x,1,10)
y2 = stats.f.pdf(x,5,10)
y3 = stats.f.pdf(x,10,10)
plt.plot(x,y1)
plt.plot(x,y2)
plt.plot(x,y3)
plt.ylim(0,1)
plt.title('F分布的概率密度函数')
plt.tight_layout()
plt.savefig("F分布的概率密度函数",dpi=300)


结果如下:

image.png

相关文章
|
4月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
137 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
183 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
3月前
|
算法 Go Python
获取指定范围符合正态分布的随机数Go/Python
获取指定范围符合正态分布的随机数Go/Python
51 0
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
72 3
|
3月前
|
存储 JSON API
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
98 7
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
|
4月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
162 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
3月前
|
数据采集 机器学习/深度学习 搜索推荐
Python自动化:关键词密度分析与搜索引擎优化
Python自动化:关键词密度分析与搜索引擎优化
|
4月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
140 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
5月前
|
机器学习/深度学习 人工智能 TensorFlow
使用Python和TensorFlow实现图像识别
【8月更文挑战第31天】本文将引导你了解如何使用Python和TensorFlow库来实现图像识别。我们将从基本的Python编程开始,逐步深入到TensorFlow的高级功能,最后通过一个简单的代码示例来展示如何训练一个模型来识别图像。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息。
189 53
|
3月前
|
JSON API 数据格式
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
66 0
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)

热门文章

最新文章