Java实现高效随机数算法的示例代码---梅森旋转算法(Mersenne twister)

本文涉及的产品
语种识别,语种识别 100万字符
图片翻译,图片翻译 100张
文档翻译,文档翻译 1千页
简介: Java实现高效随机数算法的示例代码梅森旋转算法(Mersenne twister)是一个伪随机数发生算法。由松本真和西村拓士在1997年开发,基于有限二进制字段上的矩阵线性递归。可以快速产生高质量的伪随机数,修正了古典随机数发生算法的很多缺陷。最为广泛使用Mersenne Twister的一种变体是MT19937,可以产生32位整数序列。
import java.util.Random;

/**
 * MT19937的Java实现
 */
public class MTRandom extends Random {
  
  // Constants used in the original C implementation
  private final static int UPPER_MASK = 0x80000000;
  private final static int LOWER_MASK = 0x7fffffff;

  private final static int N = 624;
  private final static int M = 397;
  private final static int MAGIC[] = { 0x0, 0x9908b0df };
  private final static int MAGIC_FACTOR1 = 1812433253;
  private final static int MAGIC_FACTOR2 = 1664525;
  private final static int MAGIC_FACTOR3 = 1566083941;
  private final static int MAGIC_MASK1  = 0x9d2c5680;
  private final static int MAGIC_MASK2  = 0xefc60000;
  private final static int MAGIC_SEED  = 19650218;
  private final static long DEFAULT_SEED = 5489L;

  // Internal state
  private transient int[] mt;
  private transient int mti;
  private transient boolean compat = false;

  // Temporary buffer used during setSeed(long)
  private transient int[] ibuf;

  /**
   * The default constructor for an instance of MTRandom. This invokes
   * the no-argument constructor for java.util.Random which will result
   * in the class being initialised with a seed value obtained by calling
   * System.currentTimeMillis().
   */
  public MTRandom() { }

  /**
   * This version of the constructor can be used to implement identical
   * behaviour to the original C code version of this algorithm including
   * exactly replicating the case where the seed value had not been set
   * prior to calling genrand_int32.
   * <p>
   * If the compatibility flag is set to true, then the algorithm will be
   * seeded with the same default value as was used in the original C
   * code. Furthermore the setSeed() method, which must take a 64 bit
   * long value, will be limited to using only the lower 32 bits of the
   * seed to facilitate seamless migration of existing C code into Java
   * where identical behaviour is required.
   * <p>
   * Whilst useful for ensuring backwards compatibility, it is advised
   * that this feature not be used unless specifically required, due to
   * the reduction in strength of the seed value.
   *
   * @param compatible Compatibility flag for replicating original
   * behaviour.
   */
  public MTRandom(boolean compatible) {
    super(0L);
    compat = compatible;
    setSeed(compat?DEFAULT_SEED:System.currentTimeMillis());
  }

  /**
   * This version of the constructor simply initialises the class with
   * the given 64 bit seed value. For a better random number sequence
   * this seed value should contain as much entropy as possible.
   *
   * @param seed The seed value with which to initialise this class.
   */
  public MTRandom(long seed) {
    super(seed);
  }

  /**
   * This version of the constructor initialises the class with the
   * given byte array. All the data will be used to initialise this
   * instance.
   *
   * @param buf The non-empty byte array of seed information.
   * @throws NullPointerException if the buffer is null.
   * @throws IllegalArgumentException if the buffer has zero length.
   */
  public MTRandom(byte[] buf) {
    super(0L);
    setSeed(buf);
  }

  /**
   * This version of the constructor initialises the class with the
   * given integer array. All the data will be used to initialise
   * this instance.
   *
   * @param buf The non-empty integer array of seed information.
   * @throws NullPointerException if the buffer is null.
   * @throws IllegalArgumentException if the buffer has zero length.
   */
  public MTRandom(int[] buf) {
    super(0L);
    setSeed(buf);
  }

  // Initializes mt[N] with a simple integer seed. This method is
  // required as part of the Mersenne Twister algorithm but need
  // not be made public.
  private final void setSeed(int seed) {

    // Annoying runtime check for initialisation of internal data
    // caused by java.util.Random invoking setSeed() during init.
    // This is unavoidable because no fields in our instance will
    // have been initialised at this point, not even if the code
    // were placed at the declaration of the member variable.
    if (mt == null) mt = new int[N];

    // ---- Begin Mersenne Twister Algorithm ----
    mt[0] = seed;
    for (mti = 1; mti < N; mti++) {
      mt[mti] = (MAGIC_FACTOR1 * (mt[mti-1] ^ (mt[mti-1] >>> 30)) + mti);
    }
    // ---- End Mersenne Twister Algorithm ----
  }

  /**
   * This method resets the state of this instance using the 64
   * bits of seed data provided. Note that if the same seed data
   * is passed to two different instances of MTRandom (both of
   * which share the same compatibility state) then the sequence
   * of numbers generated by both instances will be identical.
   * <p>
   * If this instance was initialised in 'compatibility' mode then
   * this method will only use the lower 32 bits of any seed value
   * passed in and will match the behaviour of the original C code
   * exactly with respect to state initialisation.
   *
   * @param seed The 64 bit value used to initialise the random
   * number generator state.
   */
  public final synchronized void setSeed(long seed) {
    if (compat) {
      setSeed((int)seed);
    } else {

      // Annoying runtime check for initialisation of internal data
      // caused by java.util.Random invoking setSeed() during init.
      // This is unavoidable because no fields in our instance will
      // have been initialised at this point, not even if the code
      // were placed at the declaration of the member variable.
      if (ibuf == null) ibuf = new int[2];

      ibuf[0] = (int)seed;
      ibuf[1] = (int)(seed >>> 32);
      setSeed(ibuf);
    }
  }

  /**
   * This method resets the state of this instance using the byte
   * array of seed data provided. Note that calling this method
   * is equivalent to calling "setSeed(pack(buf))" and in particular
   * will result in a new integer array being generated during the
   * call. If you wish to retain this seed data to allow the pseudo
   * random sequence to be restarted then it would be more efficient
   * to use the "pack()" method to convert it into an integer array
   * first and then use that to re-seed the instance. The behaviour
   * of the class will be the same in both cases but it will be more
   * efficient.
   *
   * @param buf The non-empty byte array of seed information.
   * @throws NullPointerException if the buffer is null.
   * @throws IllegalArgumentException if the buffer has zero length.
   */
  public final void setSeed(byte[] buf) {
    setSeed(pack(buf));
  }

  /**
   * This method resets the state of this instance using the integer
   * array of seed data provided. This is the canonical way of
   * resetting the pseudo random number sequence.
   *
   * @param buf The non-empty integer array of seed information.
   * @throws NullPointerException if the buffer is null.
   * @throws IllegalArgumentException if the buffer has zero length.
   */
  public final synchronized void setSeed(int[] buf) {
    int length = buf.length;
    if (length == 0) throw new IllegalArgumentException("Seed buffer may not be empty");
    // ---- Begin Mersenne Twister Algorithm ----
    int i = 1, j = 0, k = (N > length ? N : length);
    setSeed(MAGIC_SEED);
    for (; k > 0; k--) {
      mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >>> 30)) * MAGIC_FACTOR2)) + buf[j] + j;
      i++; j++;
      if (i >= N) { mt[0] = mt[N-1]; i = 1; }
      if (j >= length) j = 0;
    }
    for (k = N-1; k > 0; k--) {
      mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >>> 30)) * MAGIC_FACTOR3)) - i;
      i++;
      if (i >= N) { mt[0] = mt[N-1]; i = 1; }
    }
    mt[0] = UPPER_MASK; // MSB is 1; assuring non-zero initial array
    // ---- End Mersenne Twister Algorithm ----
  }

  /**
   * This method forms the basis for generating a pseudo random number
   * sequence from this class. If given a value of 32, this method
   * behaves identically to the genrand_int32 function in the original
   * C code and ensures that using the standard nextInt() function
   * (inherited from Random) we are able to replicate behaviour exactly.
   * <p>
   * Note that where the number of bits requested is not equal to 32
   * then bits will simply be masked out from the top of the returned
   * integer value. That is to say that:
   * <pre>
   * mt.setSeed(12345);
   * int foo = mt.nextInt(16) + (mt.nextInt(16) << 16);</pre>
   * will not give the same result as
   * <pre>
   * mt.setSeed(12345);
   * int foo = mt.nextInt(32);</pre>
   *
   * @param bits The number of significant bits desired in the output.
   * @return The next value in the pseudo random sequence with the
   * specified number of bits in the lower part of the integer.
   */
  protected final synchronized int next(int bits) {
    // ---- Begin Mersenne Twister Algorithm ----
    int y, kk;
    if (mti >= N) {       // generate N words at one time

      // In the original C implementation, mti is checked here
      // to determine if initialisation has occurred; if not
      // it initialises this instance with DEFAULT_SEED (5489).
      // This is no longer necessary as initialisation of the
      // Java instance must result in initialisation occurring
      // Use the constructor MTRandom(true) to enable backwards
      // compatible behaviour.

      for (kk = 0; kk < N-M; kk++) {
        y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK);
        mt[kk] = mt[kk+M] ^ (y >>> 1) ^ MAGIC[y & 0x1];
      }
      for (;kk < N-1; kk++) {
        y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK);
        mt[kk] = mt[kk+(M-N)] ^ (y >>> 1) ^ MAGIC[y & 0x1];
      }
      y = (mt[N-1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
      mt[N-1] = mt[M-1] ^ (y >>> 1) ^ MAGIC[y & 0x1];

      mti = 0;
    }

    y = mt[mti++];

    // Tempering
    y ^= (y >>> 11);
    y ^= (y << 7) & MAGIC_MASK1;
    y ^= (y << 15) & MAGIC_MASK2;
    y ^= (y >>> 18);
    // ---- End Mersenne Twister Algorithm ----
    return (y >>> (32-bits));
  }

  // This is a fairly obscure little code section to pack a
  // byte[] into an int[] in little endian ordering.

  /**
   * This simply utility method can be used in cases where a byte
   * array of seed data is to be used to repeatedly re-seed the
   * random number sequence. By packing the byte array into an
   * integer array first, using this method, and then invoking
   * setSeed() with that; it removes the need to re-pack the byte
   * array each time setSeed() is called.
   * <p>
   * If the length of the byte array is not a multiple of 4 then
   * it is implicitly padded with zeros as necessary. For example:
   * <pre>  byte[] { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 }</pre>
   * becomes
   * <pre>  int[] { 0x04030201, 0x00000605 }</pre>
   * <p>
   * Note that this method will not complain if the given byte array
   * is empty and will produce an empty integer array, but the
   * setSeed() method will throw an exception if the empty integer
   * array is passed to it.
   *
   * @param buf The non-null byte array to be packed.
   * @return A non-null integer array of the packed bytes.
   * @throws NullPointerException if the given byte array is null.
   */
  public static int[] pack(byte[] buf) {
    int k, blen = buf.length, ilen = ((buf.length+3) >>> 2);
    int[] ibuf = new int[ilen];
    for (int n = 0; n < ilen; n++) {
      int m = (n+1) << 2;
      if (m > blen) m = blen;
      for (k = buf[--m]&0xff; (m & 0x3) != 0; k = (k << 8) | buf[--m]&0xff);
      ibuf[n] = k;
    }
    return ibuf;
  }
}
目录
相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
92 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
54 3
|
23天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
104 63
|
4月前
|
搜索推荐 算法 Java
手写快排:教你用Java写出高效排序算法!
快速排序(QuickSort)是经典的排序算法之一,基于分治思想,平均时间复杂度为O(n log n),广泛应用于各种场合。在这篇文章中,我们将手写一个Java版本的快速排序,从基础实现到优化策略,并逐步解析代码背后的逻辑。
181 1
|
2月前
|
算法 搜索推荐 Java
java 后端 使用 Graphics2D 制作海报,画echarts图,带工具类,各种细节:如头像切割成圆形,文字换行算法(完美实验success),解决画上文字、图片后不清晰问题
这篇文章介绍了如何使用Java后端技术,结合Graphics2D和Echarts等工具,生成包含个性化信息和图表的海报,并提供了详细的代码实现和GitHub项目链接。
147 0
java 后端 使用 Graphics2D 制作海报,画echarts图,带工具类,各种细节:如头像切割成圆形,文字换行算法(完美实验success),解决画上文字、图片后不清晰问题
|
2月前
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
92 2
|
2月前
|
算法 Java Linux
java制作海报一:java使用Graphics2D 在图片上写字,文字换行算法详解
这篇文章介绍了如何在Java中使用Graphics2D在图片上绘制文字,并实现自动换行的功能。
147 0
|
2月前
|
算法 Java 测试技术
数据结构 —— Java自定义代码实现顺序表,包含测试用例以及ArrayList的使用以及相关算法题
文章详细介绍了如何用Java自定义实现一个顺序表类,包括插入、删除、获取数据元素、求数据个数等功能,并对顺序表进行了测试,最后还提及了Java中自带的顺序表实现类ArrayList。
32 0
|
4月前
|
设计模式 缓存 算法
揭秘策略模式:如何用Java设计模式轻松切换算法?
【8月更文挑战第30天】设计模式是解决软件开发中特定问题的可重用方案。其中,策略模式是一种常用的行为型模式,允许在运行时选择算法行为。它通过定义一系列可互换的算法来封装具体的实现,使算法的变化与客户端分离。例如,在电商系统中,可以通过定义 `DiscountStrategy` 接口和多种折扣策略类(如 `FidelityDiscount`、`BulkDiscount` 和 `NoDiscount`),在运行时动态切换不同的折扣逻辑。这样,`ShoppingCart` 类无需关心具体折扣计算细节,只需设置不同的策略即可实现灵活的价格计算,符合开闭原则并提高代码的可维护性和扩展性。
70 2
|
4月前
|
安全 算法 Java
java系列之~~网络通信安全 非对称加密算法的介绍说明
这篇文章介绍了非对称加密算法,包括其定义、加密解密过程、数字签名功能,以及与对称加密算法的比较,并解释了非对称加密在网络安全中的应用,特别是在公钥基础设施和信任网络中的重要性。
下一篇
DataWorks