时间序列入门

简介: 时间序列入门

时间序列定义


时间序列(英语:time series)是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理


时间序列特性


时间序列中的每个观察值大小,是影响变化的各种不同因素在同一时刻发生作用的综合结果。从这些影响因素发生作用的大小和方向变化的时间特性来看,这些因素造成的时间序列数据的变动分为四种类型。


(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不相等。

(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。

(3)随机性:个别为随机变动,整体呈统计规律。

(4)综合性:实际变化情况是几种变动的叠加或组合。预测时设法过滤除去不规则变动,突出反映趋势性和周期性变动。


单步预测/多步预测


通常,时间序列预测描述了预测下一个时间步长的观测值。这被称为“一步预测”,因为仅要预测一个时间步。在一些时间序列问题中,必须预测多个时间步长。与单步预测相比,这些称为多步时间序列预测问题。比如给定历史7天内的天气温度,单步预测就是预测第8天的温度,预测后续三天的气温就是多步预测。


时间序列多步预测的五种策略


(1) 直接多步预测

(2) 递归多步预测

(3) 直接+递归的混合策略

(4) 第五种策略:seq2seq结构


时间序列多步预测的五种策略 https://zhuanlan.zhihu.com/p/308764952


时间序列预测方法


相关文章
|
8月前
|
机器学习/深度学习 算法 数据建模
探索XGBoost:时间序列数据建模
探索XGBoost:时间序列数据建模
249 2
|
5月前
|
数据可视化 vr&ar Python
多元时间序列分析统计学基础:基本概念、VMA、VAR和VARMA
多元时间序列是一个在大学课程中经常未被提及的话题。但是现实世界的数据通常具有多个维度,所以需要多元时间序列分析技术。在这文章我们将通过可视化和Python实现来学习多元时间序列概念。这里假设读者已经了解单变量时间序列分析。
99 6
多元时间序列分析统计学基础:基本概念、VMA、VAR和VARMA
|
8月前
|
vr&ar
时间序列分析实战(十):ARIMAX时序的协整动态模型
时间序列分析实战(十):ARIMAX时序的协整动态模型
|
8月前
|
机器学习/深度学习 自然语言处理 物联网
Chronos: 将时间序列作为一种语言进行学习
Chronos框架预训练时间序列模型,将序列值转为Transformer模型的tokens。通过缩放、量化处理,模型在合成及公共数据集上训练,参数量20M至710M不等。优于传统和深度学习模型,展示出色零样本预测性能。使用分类交叉熵损失,支持多模态输出分布学习。数据增强策略包括TSMix和KernelSynth。实验显示大型Chronos模型在概率和点预测上超越多种基线,且微调小型模型表现优异。虽然推理速度较慢,但其通用性简化了预测流程。论文探讨了优化潜力和未来研究方向。
311 3
|
5月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
5月前
|
机器学习/深度学习 数据采集 监控
怎么用机器学习做时间序列
8月更文挑战第20天
88 9
|
8月前
|
数据挖掘 vr&ar Python
使用Python实现时间序列预测模型
使用Python实现时间序列预测模型
153 3
|
8月前
|
机器学习/深度学习 数据可视化 Python
R语言神经网络模型预测多元时间序列数据可视化
R语言神经网络模型预测多元时间序列数据可视化
|
8月前
|
运维 算法 C++
R语言时间序列分解和异常检测方法应用案例
R语言时间序列分解和异常检测方法应用案例
|
8月前
|
机器学习/深度学习
R语言计量经济学与有时间序列模式的机器学习预测
R语言计量经济学与有时间序列模式的机器学习预测

热门文章

最新文章

下一篇
开通oss服务