数据结构与算法之树的入门(二叉树)(一)

简介: 数据结构与算法之树的入门(二叉树)

二叉树入门


之前我们实现的符号表中,不难看出,符号表的增删查操作,随着元素个数N的增多,其耗时也是线性增多的,时间复杂度都是O(n),为了提高运算效率,接下来我们学习树这种数据结构。


一、 树的基本定义


树是我们计算机中非常重要的一种数据结构,同时使用树这种数据结构,可以描述现实生活中的很多事物,例如家谱、单位的组织架构、等等。


树是由n(n>=1)个有限结点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的


7acae18068544bb8a2bc96637ce15383.png


树具有以下特点:


1.每个结点有零个或多个子结点;

2.没有父结点的结点为根结点;

3.每一个非根结点只有一个父结点;

4.每个结点及其后代结点整体上可以看做是一棵树,称为当前结点的父结点的一个子树;


二、树的相关术语


结点的度:

一个结点含有的子树的个数称为该结点的度;


叶结点:

度为0的结点称为叶结点,也可以叫做终端结点


分支结点:

度不为0的结点称为分支结点,也可以叫做非终端结点


结点的层次:

从根结点开始,根结点的层次为1,根的直接后继层次为2,以此类推


结点的层序编号:

将树中的结点,按照从上层到下层,同层从左到右的次序排成一个线性序列,把他们编成连续的自然数。


树的度:

树中所有结点的度的最大值


树的高度(深度):

树中结点的最大层次


森林:

m(m>=0)个互不相交的树的集合,将一颗非空树的根结点删去,树就变成一个森林;给森林增加一个统一的根结点,森林就变成一棵树


da02d77478c546218f420254fb82e978.png


孩子结点:


一个结点的直接后继结点称为该结点的孩子结点

双亲结点(父结点):

一个结点的直接前驱称为该结点的双亲结点

兄弟结点:

同一双亲结点的孩子结点间互称兄弟结点


三、二叉树的基本定义


二叉树就是度不超过 2的树(每个结点最多有两个子结点)


3923a30198874d9bbe58b6fc643bc7e7.png


满二叉树:


一个二叉树,如果每一个层的结点树都达到最大值,则这个二叉树就是满二叉树。


5c120b6ee2604461a2b680adc8575708.png

完全二叉树:


叶节点只能出现在最下层和次下层,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树


2cc4e400d90244c6989d0a1b16818710.png

四、二叉查找树的创建


4.1.二叉树的结点类


根据对图的观察,我们发现二叉树其实就是由一个一个的结点及其之间的关系组成的,按照面向对象的思想,我们设计一个结点类来描述结点这个事物。


结点类API设计:


image.png

代码实现:

private class Node<Key,Value>{
  //存储键
  public Key key;
  //存储值
  private Value value;
  //记录左子结点
  public Node left;
  //记录右子结点
  public Node right;
  public Node(Key key, Value value, Node left, Node right) {
    this.key = key;
    this.value = value;
    this.left = left;
    this.right = right;
  }
}

4.2. 二叉查找树API设计


image.png


4.3.二叉查找树实现


插入方法put实现思想:


1.如果当前树中没有任何一个结点,则直接把新结点当做根结点使用

2.如果当前树不为空,则从根结点开始:

2.1如果新结点的key小于当前结点的key,则继续找当前结点的左子结点;

2.2如果新结点的key大于当前结点的key,则继续找当前结点的右子结点;

2.3如果新结点的key等于当前结点的key,则树中已经存在这样的结点,替换该结点的value值即可。


c7d95798b67d49128453f9402ca50672.png

db71ecc250514e0292ecb89edcb83356.png


查询方法 get实现思想:


从根节点开始:

1.如果要查询的key小于当前结点的key,则继续找当前结点的左子结点;

2.如果要查询的key大于当前结点的key,则继续找当前结点的右子结点;

3.如果要查询的key等于当前结点的key,则树中返回当前结点的value。


删除方法delete实现思想:


1.找到被删除结点;

2.找到被删除结点右子树中的最小结点minNode

3.删除右子树中的最小结点

4.让被删除结点的左子树称为最小结点minNode的左子树,让被删除结点的右子树称为最小结点minNode的右子树

5.让被删除结点的父节点指向最小结点minNode


代码:

// 二叉树代码
public class BinaryTree<Key extends Comparable<Key>, Value> {
  //记录根结点
  private Node root;
  //记录树中元素的个数
  private int N;
  //获取树中元素的个数
  public int size() {
    return N;
  }
  //向树中添加元素key-value
  public void put(Key key, Value value) {
    root = put(root, key, value);
  }
  //向指定的树x中添加key-value,并返回添加元素后新的树
  private Node put(Node x, Key key, Value value) {
    if (x == null) {
      //个数+1
      N++;
      return new Node(key, value, null, null);
    }
    int cmp = key.compareTo(x.key);
    if (cmp > 0) {
      //新结点的key大于当前结点的key,继续找当前结点的右子结点
      x.right = put(x.right, key, value);
    } else if (cmp < 0) {
      //新结点的key小于当前结点的key,继续找当前结点的左子结点
      x.left = put(x.left, key, value);
    } else {
      //新结点的key等于当前结点的key,把当前结点的value进行替换
      x.value = value;
    }
    return x;
  }
  //查询树中指定key对应的value
  public Value get(Key key) {
    return get(root, key);
  }
  //从指定的树x中,查找key对应的值
  public Value get(Node x, Key key) {
    if (x == null) {
    return null;
  }
  int cmp = key.compareTo(x.key);
  if (cmp > 0) {
    //如果要查询的key大于当前结点的key,则继续找当前结点的右子结点;
    return get(x.right, key);
  } else if (cmp < 0) {
    //如果要查询的key小于当前结点的key,则继续找当前结点的左子结点;
    return get(x.left, key);
  } else {
    //如果要查询的key等于当前结点的key,则树中返回当前结点的value。
    return x.value;
  }
}
  //删除树中key对应的value
  public void delete(Key key) {
    root = delete(root, key);
  }
  //删除指定树x中的key对应的value,并返回删除后的新树
  public Node delete(Node x, Key key) {
    if (x == null) {
      return null;
    }
    int cmp = key.compareTo(x.key);
    if (cmp > 0) {
      //新结点的key大于当前结点的key,继续找当前结点的右子结点
      x.right = delete(x.right, key);
    } else if (cmp < 0) {
      //新结点的key小于当前结点的key,继续找当前结点的左子结点
      x.left = delete(x.left, key);
    } else {
      //新结点的key等于当前结点的key,当前x就是要删除的结点
      //1.如果当前结点的右子树不存在,则直接返回当前结点的左子结点
      if (x.right == null) {
      return x.left;
    }
    //2.如果当前结点的左子树不存在,则直接返回当前结点的右子结点
    if (x.left == null) {
      return x.right;
    }
    //3.当前结点的左右子树都存在
    //3.1找到右子树中最小的结点
    Node minNode = x.right;
    while (minNode.left != null) {
      minNode = minNode.left;
    }
    //3.2删除右子树中最小的结点
    Node n = x.right;
    while (n.left != null) {
    if (n.left.left == null) {
      n.left = null;
    } else {
      n = n.left;
    }
  }
  //3.3让被删除结点的左子树称为最小结点minNode的左子树,让被删除结点的右子树称为最小结点
  minNode的右子树
  minNode.left = x.left;
  minNode.right = x.right;
  //3.4让被删除结点的父节点指向最小结点minNode
  x = minNode;
  //个数-1
  N--;
  }
  return x;
}
  private class Node {
    //存储键
    public Key key;
    //存储值
    private Value value;
    //记录左子结点
    public Node left;
    //记录右子结点
    public Node right;
    public Node(Key key, Value value, Node left, Node right) {
      this.key = key;
      this.value = value;
      this.left = left;
      this.right = right;
    }
  }
}
//测试代码
public class Test {
  public static void main(String[] args) throws Exception {
    BinaryTree<Integer, String> bt = new BinaryTree<>();
    bt.put(4, "二哈");
    bt.put(1, "张三");
    bt.put(3, "李四");
    bt.put(5, "王五");
    System.out.println(bt.size());
    bt.put(1,"老三");
    System.out.println(bt.get(1));
    System.out.println(bt.size());
    bt.delete(1);
    System.out.println(bt.size());
  }
}

4.4.二叉查找树其他便捷方法


4.4.1.查找二叉树中最小的键在这里插入代码片


在某些情况下,我们需要查找出树中存储所有元素的键的最小值,比如我们的树中存储的是学生的排名和姓名数据,那么需要查找出排名最低是多少名?这里我们设计如下两个方法来完成:


public Key min() 找出树中最小的键
private Node min(Node x) 找出指定树x中,最小键所在的结点


//找出整个树中最小的键
public Key min(){
  return min(root).key;
}
//找出指定树x中最小的键所在的结点
private Node min(Node x){
  if (x.left!=null){
    return min(x.left);
  }else{
    return x;
  }
}


目录
相关文章
|
2月前
|
存储 算法
算法入门:专题二---滑动窗口(长度最小的子数组)类型题目攻克!
给定一个正整数数组和目标值target,找出总和大于等于target的最短连续子数组长度。利用滑动窗口(双指针)优化,维护窗口内元素和,通过单调性避免重复枚举,时间复杂度O(n)。当窗口和满足条件时收缩左边界,更新最小长度,最终返回结果。
|
2月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
207 4
|
2月前
|
存储 算法
算法入门:专题一:双指针(有效三角形的个数)
给定一个数组,找出能组成三角形的三元组个数。利用“两边之和大于第三边”的性质,先排序,再用双指针优化。固定最大边,左右指针从区间两端向内移动,若两短边之和大于最长边,则中间所有组合均有效,时间复杂度由暴力的O(n³)降至O(n²)。
|
2月前
|
存储 算法 编译器
算法入门:剑指offer改编题目:查找总价格为目标值的两个商品
给定递增数组和目标值target,找出两数之和等于target的两个数字。利用双指针法,left从头、right从尾向中间逼近,根据和与target的大小关系调整指针,时间复杂度O(n),空间复杂度O(1)。找不到时返回{-1,-1}。
|
5月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
139 2
|
7月前
|
存储 机器学习/深度学习 算法
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty  敏感词
|
5月前
|
机器学习/深度学习 数据采集 算法
你天天听“数据挖掘”,可它到底在“挖”啥?——数据挖掘算法入门扫盲篇
你天天听“数据挖掘”,可它到底在“挖”啥?——数据挖掘算法入门扫盲篇
110 0
|
7月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
192 17
|
7月前
|
存储 监控 算法
局域网上网记录监控的 C# 基数树算法高效检索方案研究
在企业网络管理与信息安全领域,局域网上网记录监控是维护网络安全、规范网络行为的关键举措。随着企业网络数据量呈指数级增长,如何高效存储和检索上网记录数据成为亟待解决的核心问题。基数树(Trie 树)作为一种独特的数据结构,凭借其在字符串处理方面的卓越性能,为局域网上网记录监控提供了创新的解决方案。本文将深入剖析基数树算法的原理,并通过 C# 语言实现的代码示例,阐述其在局域网上网记录监控场景中的具体应用。
174 7
|
6月前
|
机器学习/深度学习 算法 搜索推荐
决策树算法如何读懂你的购物心理?一文看懂背后的科学
"你为什么总能收到刚好符合需求的商品推荐?你有没有好奇过,为什么刚浏览过的商品就出现了折扣通知?

热门文章

最新文章