判别式模型(discriminative model)和生成模型(generative model)

简介: 已知输入变量x,判别模型(discriminative model)通过求解条件概率分布P(y|x)或者直接计算y的值来预测y。生成模型(generative model)通过对观测值和标注数据计算联合概率分布P(x,y)来达到判定估算y的目的。

已知输入变量x,判别模型(discriminative model)通过求解条件概率分布P(y|x)或者直接计算y的值来预测y。生成模型(generative model)通过对观测值和标注数据计算联合概率分布P(x,y)来达到判定估算y的目的。


判别模型


常见的判别模型有线性回归(Linear Regression),逻辑回归(Logistic Regression),支持向量机(SVM), 传统神经网络(Traditional Neural Networks),线性判别分析(Linear Discriminative Analysis),条件随机场(Conditional Random Field);


生成模型


常见的生成模型有朴素贝叶斯(Naive Bayes), 隐马尔科夫模型(HMM),贝叶斯网络(Bayesian Networks)和隐含狄利克雷分布(Latent Dirichlet Allocation)。


相关阅读


判别式模型 vs. 生成式模型


51.png


相关文章
|
6月前
|
机器学习/深度学习 编解码 计算机视觉
扩散模型(Diffusion Model)
扩散模型(Diffusion Model)
228 1
|
机器学习/深度学习 数据采集 自然语言处理
【Deep Learning A情感文本分类实战】2023 Pytorch+Bert、Roberta+TextCNN、BiLstm、Lstm等实现IMDB情感文本分类完整项目(项目已开源)
亮点:代码开源+结构清晰+准确率高+保姆级解析 🍊本项目使用Pytorch框架,使用上游语言模型+下游网络模型的结构实现IMDB情感分析 🍊语言模型可选择Bert、Roberta 🍊神经网络模型可选择BiLstm、LSTM、TextCNN、Rnn、Gru、Fnn共6种 🍊语言模型和网络模型扩展性较好,方便读者自己对模型进行修改
580 0
|
6月前
|
机器学习/深度学习 算法 数据可视化
模型训练(Model Training)
模型训练(Model Training)是指使用数据集对模型进行训练,使其能够从数据中学习到特征和模式,进而完成特定的任务。在深度学习领域,通常使用反向传播算法来训练模型,其中模型会根据数据集中的输入和输出,不断更新其参数,以最小化损失函数。
458 1
|
机器学习/深度学习 自然语言处理 Apache
Transformer 模型实用介绍:BERT
Transformer 模型实用介绍:BERT
214 0
|
机器学习/深度学习 人工智能 自然语言处理
论文解读系列| 04:【NER】FLAT模型详解
FLAT也是一种将词汇信息融入character-based模型的解决方案。有2个创新点(1)将lattice结构转为由spans组成的平铺结构,每个span可以是字符或者词及其在原始lattice结构中的位置;(2)基于Transformer设计了一种巧妙position encoding来充分利用lattice结构信息,从而无损地引入词汇信息。
|
机器学习/深度学习 存储 编解码
Transformer-Unet | 如何用Transformer一步一步改进 Unet?
Transformer-Unet | 如何用Transformer一步一步改进 Unet?
600 0
|
机器学习/深度学习
推理(Inference)与预测(Prediction)
推理(Inference)与预测(Prediction)
486 1
推理(Inference)与预测(Prediction)
|
机器学习/深度学习 自然语言处理 算法
机器学习算法之——隐马尔可夫模型(Hidden Markov Models,HMM)
隐马尔可夫模型(Hidden Markov Model,HMM)是结构最简单的动态贝叶斯网,这是一种著名的有向图模型,主要用于时序数据建模(语音识别、自然语言处理等)。
机器学习算法之——隐马尔可夫模型(Hidden Markov Models,HMM)
|
机器学习/深度学习 算法 计算机视觉
YOLOv5的Tricks | 【Trick2】目标检测中进行多模型推理预测(Model Ensemble)
在学习yolov5代码的时候,发现experimental.py文件中有一个很亮眼的模块:Ensemble。接触过机器学习的可能了解到,机器学习的代表性算法是随机森林这种,使用多个模型来并行推理,然后归纳他们的中值或者是平均值来最为整个模型的最后预测结构,没想到的是目标检测中也可以使用,叹为观止。下面就对其进行详细介绍:
1437 1
|
机器学习/深度学习 缓存 API
【Computer Vision】基于ResNet-50实现CIFAR10数据集分类
【Computer Vision】基于ResNet-50实现CIFAR10数据集分类,基于百度飞桨开发,参考于《机器学习实践》所作。
411 1
【Computer Vision】基于ResNet-50实现CIFAR10数据集分类