判别式模型(discriminative model)和生成模型(generative model)

简介: 已知输入变量x,判别模型(discriminative model)通过求解条件概率分布P(y|x)或者直接计算y的值来预测y。生成模型(generative model)通过对观测值和标注数据计算联合概率分布P(x,y)来达到判定估算y的目的。

已知输入变量x,判别模型(discriminative model)通过求解条件概率分布P(y|x)或者直接计算y的值来预测y。生成模型(generative model)通过对观测值和标注数据计算联合概率分布P(x,y)来达到判定估算y的目的。


判别模型


常见的判别模型有线性回归(Linear Regression),逻辑回归(Logistic Regression),支持向量机(SVM), 传统神经网络(Traditional Neural Networks),线性判别分析(Linear Discriminative Analysis),条件随机场(Conditional Random Field);


生成模型


常见的生成模型有朴素贝叶斯(Naive Bayes), 隐马尔科夫模型(HMM),贝叶斯网络(Bayesian Networks)和隐含狄利克雷分布(Latent Dirichlet Allocation)。


相关阅读


判别式模型 vs. 生成式模型


51.png


相关文章
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch CIFAR10图像分类 Swin Transformer篇(一)
Pytorch CIFAR10图像分类 Swin Transformer篇(一)
|
7月前
|
机器学习/深度学习 数据可视化 算法
Pytorch CIFAR10图像分类 Swin Transformer篇(二)
Pytorch CIFAR10图像分类 Swin Transformer篇(二)
|
4月前
|
机器学习/深度学习
DNN模型训练
【8月更文挑战第9天】DNN模型训练。
33 1
|
7月前
|
机器学习/深度学习 编解码 计算机视觉
扩散模型(Diffusion Model)
扩散模型(Diffusion Model)
305 1
|
机器学习/深度学习 自然语言处理 安全
Bert on ABSA、ASGCN、GAN、Sentic GCN…你都掌握了吗?一文总结情感分析必备经典模型(1)
Bert on ABSA、ASGCN、GAN、Sentic GCN…你都掌握了吗?一文总结情感分析必备经典模型
156 0
|
机器学习/深度学习 数据采集 自然语言处理
【Deep Learning A情感文本分类实战】2023 Pytorch+Bert、Roberta+TextCNN、BiLstm、Lstm等实现IMDB情感文本分类完整项目(项目已开源)
亮点:代码开源+结构清晰+准确率高+保姆级解析 🍊本项目使用Pytorch框架,使用上游语言模型+下游网络模型的结构实现IMDB情感分析 🍊语言模型可选择Bert、Roberta 🍊神经网络模型可选择BiLstm、LSTM、TextCNN、Rnn、Gru、Fnn共6种 🍊语言模型和网络模型扩展性较好,方便读者自己对模型进行修改
645 0
|
7月前
|
机器学习/深度学习 算法 数据可视化
模型训练(Model Training)
模型训练(Model Training)是指使用数据集对模型进行训练,使其能够从数据中学习到特征和模式,进而完成特定的任务。在深度学习领域,通常使用反向传播算法来训练模型,其中模型会根据数据集中的输入和输出,不断更新其参数,以最小化损失函数。
612 1
|
机器学习/深度学习 人工智能 并行计算
深度学习应用篇-计算机视觉-图像分类[2]:LeNet、AlexNet、VGG、GoogleNet、DarkNet模型结构、实现、模型特点详细介绍
深度学习应用篇-计算机视觉-图像分类[2]:LeNet、AlexNet、VGG、GoogleNet、DarkNet模型结构、实现、模型特点详细介绍
深度学习应用篇-计算机视觉-图像分类[2]:LeNet、AlexNet、VGG、GoogleNet、DarkNet模型结构、实现、模型特点详细介绍
|
机器学习/深度学习 自然语言处理 数据挖掘
Bert on ABSA、ASGCN、GAN、Sentic GCN…你都掌握了吗?一文总结情感分析必备经典模型(2)
Bert on ABSA、ASGCN、GAN、Sentic GCN…你都掌握了吗?一文总结情感分析必备经典模型
258 1
|
机器学习/深度学习 自然语言处理 数据可视化
SimCSE: Simple Contrastive Learning of Sentence Embeddings论文解读
本文介绍了SimCSE,一个简单的对比学习框架,极大地推进了最先进的句子嵌入。我们首先描述了一种无监督方法,该方法采用一个输入句子,并在一个对比目标中预测自己
318 0