扩散模型(Diffusion Model)

简介: 扩散模型(Diffusion Model)

扩散模型(Diffusion Model)是一种基于概率统计和非均衡热力学原理的深度学习生成模型。这类模型最初受到物理中分子扩散过程的启发,应用于机器学习领域时,主要用于学习数据的概率分布,并在此基础上生成新的样本。

扩散模型的核心包含两个主要过程:

  1. 前向扩散过程(Forward Process):这一过程通常是对原始数据逐步添加高斯噪声,从而将清晰的数据点转化为越来越随机的状态,最终达到接近高斯噪声分布的程度。

  2. 逆向扩散过程(Reverse Process):模型被训练来学习如何通过一系列去噪步骤来逆转前向扩散过程,也就是从随机噪声中逐渐重构出清晰的数据样本。

在实践中,扩散模型利用神经网络作为参数化函数,用于估计每个去噪步骤所需的转换概率。特别是在计算机视觉领域,扩散模型已经展现出了强大的能力,能够生成高质量的图像,并在图像合成、图像修复、图像超分辨率等任务中取得显著成果。此外,随着研究的深入,扩散模型也被扩展应用到了音频、文本和多模态数据的生成任务中。例如,Denoising Diffusion Probabilistic Models (DDPM) 和 Denoising Diffusion Implicit Models (DDIM) 是扩散模型家族中的一些重要变体。

目录
相关文章
|
机器学习/深度学习 调度
详解 Diffusion (扩散) 模型
详解 Diffusion (扩散) 模型
253 0
|
10月前
|
编解码 人工智能 自然语言处理
AIGC基础模型——扩散模型(Diffusion Model)
【1月更文挑战第23天】AIGC基础模型——扩散模型(Diffusion Model)
509 1
AIGC基础模型——扩散模型(Diffusion Model)
|
4月前
|
数据采集 监控 异构计算
transformers+huggingface训练模型
本教程介绍了如何使用 Hugging Face 的 `transformers` 库训练一个 BERT 模型进行情感分析。主要内容包括:导入必要库、下载 Yelp 评论数据集、数据预处理、模型加载与配置、定义训练参数、评估指标、实例化训练器并开始训练,最后保存模型和训练状态。整个过程详细展示了如何利用预训练模型进行微调,以适应特定任务。
408 3
|
7月前
|
机器学习/深度学习
DNN模型训练
【8月更文挑战第9天】DNN模型训练。
54 1
|
9月前
|
人工智能 监控 并行计算
Stable Diffusion火影数据集训练:SwanLab可视化训练
**使用Stable Diffusion 1.5模型训练火影忍者风格的文生图模型。在22GB显存的GPU上,通过Huggingface的`lambdalabs/naruto-blip-captions`数据集进行训练,利用SwanLab进行监控。所需库包括`swanlab`, `diffusers`, `datasets`, `accelerate`, `torchvision`, `transformers`。代码、日志和更多资源可在GitHub和SwanLab找到。训练涉及数据下载、模型配置、训练过程可视化及结果评估。**
Stable Diffusion火影数据集训练:SwanLab可视化训练
|
8月前
|
Python
Diffusion模型
Diffusion模型
|
10月前
|
自然语言处理 算法 物联网
如何训练一个大模型:LoRA篇
如何训练一个大模型:LoRA篇
809 1
|
10月前
|
机器学习/深度学习 算法 PyTorch
使用PyTorch实现去噪扩散模型
在深入研究去噪扩散概率模型(DDPM)如何工作的细节之前,让我们先看看生成式人工智能的一些发展,也就是DDPM的一些基础研究。
150 0
|
10月前
|
机器学习/深度学习 自然语言处理 测试技术
Stable Diffusion——外挂VAE模型
Stable Diffusion——外挂VAE模型
777 0
|
编解码 缓存 搜索推荐
使用Dreambooth LoRA微调SDXL 0.9
本文将介绍如何通过LoRA对Stable Diffusion XL 0.9进行Dreambooth微调。DreamBooth是一种仅使用几张图像(大约3-5张)来个性化文本到图像模型的方法。
671 1