【人工智能】机器学习之使用Python生成ID3决策树及使用sklearn的决策树算法对葡萄酒数据集进行分类

简介: 决策树的思想:给定一个集合,其中的每个样本由若干属性表示,决策树通过贪心的策略不断挑选最优的属性。常见的决策树算法有ID3,C4.5,CART算法等。

❤❤❤ID3算法

✅✅决策树的思想:

给定一个集合,其中的每个样本由若干属性表示,决策树通过贪心的策略不断挑选最优的属性。
常见的决策树算法有ID3,C4.5,CART算法等。

💤💤💤ID3算法:

        baseEntropy = self.calcShannonEnt(dataset) # 基础熵
        num = len(dataset) # 样本总数
        
        #子集中的概率
        subDataSet = self.splitDataSet(dataset, i, val)
        prob = len(subDataSet) / float(num) 
        
        # 条件熵
        newEntropy += prob * self.calcShannonEnt(subDataSet)
        
        # 信息增益
        infoGain = baseEntropy - newEntropy

💯1.先写绘图树方法,函数。

import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', \
                            xytext=centerPt, textcoords='axes fraction', \
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)

def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs += 1
    return numLeafs

def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            thisDepth = getTreeDepth(secondDict[key]) + 1
        else:
            thisDepth = 1
        if thisDepth > maxDepth:
            maxDepth = thisDepth
    return maxDepth

def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
    yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString)

def plotTree(myTree, parentPt, nodeTxt):
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalw, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            plotTree(secondDict[key], cntrPt, str(key))
        else:
            plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalw
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD

def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    plotTree.totalw = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5 / plotTree.totalw
    plotTree.yOff = 1.0
    plotTree(inTree, (0.5, 1.0), '')
    plt.show()

💯2.ID3决策树类

class ID3Tree(object):
    def __init__(self):
        self.tree = {}  # ID3 Tree
        self.dataSet = []  # 数据集
        self.labels = []  # 标签集

    def getDataSet(self, dataset, labels):
        self.dataSet = dataset
        self.labels = labels

    def train(self):
        # labels = copy.deepcopy(self.labels)
        labels = self.labels[:]
        self.tree = self.buildTree(self.dataSet, labels)

    def buildTree(self, dataSet, labels):
        classList = [ds[-1] for ds in dataSet]  # 提取样本的类别
        if classList.count(classList[0]) == len(classList):  # 单一类别
            return classList[0]
        if len(dataSet[0]) == 1:  # 没有属性需要划分了
            return self.classify(classList)

        bestFeat = self.findBestSplit(dataSet)  # 选取最大增益的属性序号
        bestFeatLabel = labels[bestFeat]
        tree = {bestFeatLabel: {}}  # 构造一个新的树结点
        del (labels[bestFeat])  # 从总属性列表中去除最大增益属性

        featValues = [ds[bestFeat] for ds in dataSet]  # 抽取最大增益属性的取值列表
        uniqueFeatValues = set(featValues)  # 选取最大增益属性的数值类别

        for value in uniqueFeatValues:  # 对于每一个属性类别
            subLabels = labels[:]
            subDataSet = self.splitDataSet(dataSet, bestFeat, value)  # 分裂结点
            subTree = self.buildTree(subDataSet, subLabels)  # 递归构造子树
            tree[bestFeatLabel][value] = subTree
        return tree

    # 计算出现次数最多的类别标签
    def classify(self, classList):
        items = dict([(classList.count(i), i) for i in classList])
        return items[max(items.keys())]

    # 计算最优特征
    def findBestSplit(self, dataset):
        numFeatures = len(dataset[0]) - 1
        baseEntropy = self.calcShannonEnt(dataset) # 基础熵
        num = len(dataset) # 样本总数
        bestInfoGain = 0.0
        bestFeat = -1  # 初始化最优特征向量轴
        # 遍历数据集各列,寻找最优特征轴
        for i in range(numFeatures):
            featValues = [ds[i] for ds in dataset]
            uniqueFeatValues = set(featValues)
            newEntropy = 0.0
            # 按列和唯一值,计算信息熵
            for val in uniqueFeatValues:
                subDataSet = self.splitDataSet(dataset, i, val)
                prob = len(subDataSet) / float(num) # 子集中的概率
                newEntropy += prob * self.calcShannonEnt(subDataSet)
            infoGain = baseEntropy - newEntropy # 信息增益
            if infoGain > bestInfoGain: # 挑选最大值
                bestInfoGain = baseEntropy - newEntropy
                bestFeat = i
        return bestFeat

    # 从dataset数据集的feat特征中,选取值为value的数据
    def splitDataSet(self, dataset, feat, values):
        retDataSet = []
        for featVec in dataset:
            if featVec[feat] == values:
                reducedFeatVec = featVec[:feat]
                reducedFeatVec.extend(featVec[feat + 1:])
                retDataSet.append(reducedFeatVec)
        return retDataSet

    # 计算dataSet的信息熵
    def calcShannonEnt(self, dataSet):
        num = len(dataSet)  # 样本集总数
        classList = [c[-1] for c in dataSet]  # 抽取分类信息
        labelCounts = {}
        for cs in set(classList):  # 对每个分类进行计数
            labelCounts[cs] = classList.count(cs)

        shannonEnt = 0.0
        for key in labelCounts:
            prob = labelCounts[key] / float(num)
            shannonEnt -= prob * log2(prob)
        return shannonEnt

    # 预测。对输入对象进行ID3分类
    def predict(self, tree, newObject):
        #    判断输入值是否为“dict”
        while type(tree).__name__ == 'dict':
            key = list(tree.keys())[0]
            tree = tree[key][newObject[key]]
        return tree

💲💲💲给出数据集,标签集:

dataSet = [[1, 1, 1, 1,1, 1, 'Yes'],
               [2, 1, 2, 1,1, 1, 'Yes'],
               [2, 1, 1, 1,1, 1, 'Yes'],
               [1, 1, 2, 1,1, 1, 'Yes'],
               [3, 1, 1, 1,1, 1, 'Yes'],
               [1,2, 1, 1,2, 2, 'Yes'],
               [2, 2, 1, 2,2, 2, 'Yes'],
               [2, 2, 1, 1,2, 1, 'Yes'],
               [2, 2, 2, 2,2, 1, 'No'],
               [1,3, 3, 1,3, 2, 'No'],
               [3, 3, 3, 3,3, 1, 'No'],
               [3, 1, 1, 3,3, 2, 'No'],
               [1, 2, 1, 2,1, 1, 'No'],
               [3,2, 2, 2,1, 1, 'No'],
               [2, 2, 1, 1,2, 2, 'No'],
               [3, 1, 1, 3,3, 1, 'No'],
               [1, 1, 2, 2,2, 1, 'No'],]

    #'色泽', '根蒂', '敲声', '纹理','脐部', '触感'
    features = ['seze', 'gendi', 'qiaosheng', 'wenli','qibu', 'chugan'] 

💞💞完整代码

from math import log2
import treePlotter

class ID3Tree(object):
    def __init__(self):
        self.tree = {}  # ID3 Tree
        self.dataSet = []  # 数据集
        self.labels = []  # 标签集

    def getDataSet(self, dataset, labels):
        self.dataSet = dataset
        self.labels = labels

    def train(self):
        # labels = copy.deepcopy(self.labels)
        labels = self.labels[:]
        self.tree = self.buildTree(self.dataSet, labels)

    def buildTree(self, dataSet, labels):
        classList = [ds[-1] for ds in dataSet]  # 提取样本的类别
        if classList.count(classList[0]) == len(classList):  # 单一类别
            return classList[0]
        if len(dataSet[0]) == 1:  # 没有属性需要划分了
            return self.classify(classList)

        bestFeat = self.findBestSplit(dataSet)  # 选取最大增益的属性序号
        bestFeatLabel = labels[bestFeat]
        tree = {bestFeatLabel: {}}  # 构造一个新的树结点
        del (labels[bestFeat])  # 从总属性列表中去除最大增益属性

        featValues = [ds[bestFeat] for ds in dataSet]  # 抽取最大增益属性的取值列表
        uniqueFeatValues = set(featValues)  # 选取最大增益属性的数值类别

        for value in uniqueFeatValues:  # 对于每一个属性类别
            subLabels = labels[:]
            subDataSet = self.splitDataSet(dataSet, bestFeat, value)  # 分裂结点
            subTree = self.buildTree(subDataSet, subLabels)  # 递归构造子树
            tree[bestFeatLabel][value] = subTree
        return tree

    # 计算出现次数最多的类别标签
    def classify(self, classList):
        items = dict([(classList.count(i), i) for i in classList])
        return items[max(items.keys())]

    # 计算最优特征
    def findBestSplit(self, dataset):
        numFeatures = len(dataset[0]) - 1
        baseEntropy = self.calcShannonEnt(dataset) # 基础熵
        num = len(dataset) # 样本总数
        bestInfoGain = 0.0
        bestFeat = -1  # 初始化最优特征向量轴
        # 遍历数据集各列,寻找最优特征轴
        for i in range(numFeatures):
            featValues = [ds[i] for ds in dataset]
            uniqueFeatValues = set(featValues)
            newEntropy = 0.0
            # 按列和唯一值,计算信息熵
            for val in uniqueFeatValues:
                subDataSet = self.splitDataSet(dataset, i, val)
                prob = len(subDataSet) / float(num) # 子集中的概率
                newEntropy += prob * self.calcShannonEnt(subDataSet)
            infoGain = baseEntropy - newEntropy # 信息增益
            if infoGain > bestInfoGain: # 挑选最大值
                bestInfoGain = baseEntropy - newEntropy
                bestFeat = i
        return bestFeat

    # 从dataset数据集的feat特征中,选取值为value的数据
    def splitDataSet(self, dataset, feat, values):
        retDataSet = []
        for featVec in dataset:
            if featVec[feat] == values:
                reducedFeatVec = featVec[:feat]
                reducedFeatVec.extend(featVec[feat + 1:])
                retDataSet.append(reducedFeatVec)
        return retDataSet

    # 计算dataSet的信息熵
    def calcShannonEnt(self, dataSet):
        num = len(dataSet)  # 样本集总数
        classList = [c[-1] for c in dataSet]  # 抽取分类信息
        labelCounts = {}
        for cs in set(classList):  # 对每个分类进行计数
            labelCounts[cs] = classList.count(cs)

        shannonEnt = 0.0
        for key in labelCounts:
            prob = labelCounts[key] / float(num)
            shannonEnt -= prob * log2(prob)
        return shannonEnt

    # 预测。对输入对象进行ID3分类
    def predict(self, tree, newObject):
        #    判断输入值是否为“dict”
        while type(tree).__name__ == 'dict':
            key = list(tree.keys())[0]
            tree = tree[key][newObject[key]]
        return tree

if __name__ == '__main__':
    def createDataSet():
        dataSet = [[1, 1, 1, 1,1, 1, 'Yes'],
                   [2, 1, 2, 1,1, 1, 'Yes'],
                   [2, 1, 1, 1,1, 1, 'Yes'],
                   [1, 1, 2, 1,1, 1, 'Yes'],
                   [3, 1, 1, 1,1, 1, 'Yes'],
                   [1,2, 1, 1,2, 2, 'Yes'],
                   [2, 2, 1, 2,2, 2, 'Yes'],
                   [2, 2, 1, 1,2, 1, 'Yes'],
                   [2, 2, 2, 2,2, 1, 'No'],
                   [1,3, 3, 1,3, 2, 'No'],
                   [3, 3, 3, 3,3, 1, 'No'],
                   [3, 1, 1, 3,3, 2, 'No'],
                   [1, 2, 1, 2,1, 1, 'No'],
                   [3,2, 2, 2,1, 1, 'No'],
                   [2, 2, 1, 1,2, 2, 'No'],
                   [3, 1, 1, 3,3, 1, 'No'],
                   [1, 1, 2, 2,2, 1, 'No'],]

        #'色泽', '根蒂', '敲声', '纹理','脐部', '触感'
        features = ['seze', 'gendi', 'qiaosheng', 'wenli','qibu', 'chugan'] 
        
        return dataSet, features

    id3 = ID3Tree()  # 创建一个ID3决策树
    ds, labels = createDataSet()
    id3.getDataSet(ds, labels)
    id3.train()  # 训练ID3决策树
    print(id3.tree)  # 输出ID3决策树
    print(id3.predict(id3.tree,{'seze':2,'gendi':2,'qiaosheng':1,'wenli':1,'qibu':1,'chugan':1}))
    treePlotter.createPlot(id3.tree)

💥💥生成决策树:

在这里插入图片描述

💌💌💌ID3算法实例

💨💨1.使用sklearn的决策树算法对葡萄酒数据集进行分类,要求:

(1)划分训练集和测试集(测试集占20%)

(2)对测试集的预测类别标签和真实标签进行对比

(3)输出分类的准确率

(4)调整参数比较不同算法(ID3, CART)的分类效果。

🕳🕳2. 利用给定ID3算法,画出下列训练集的决策树。

在这里插入图片描述

🍇🍇🍇1.葡萄酒分类

🚲🚲🚲(1)划分训练集和测试集(测试集占20%)

test_size等于几就是测试集占比
x_train, x_test, y_train, y_test = train_test_split(

   X, Y, test_size=0.2, random_state=0)

🚓🚓(2)对测试集的预测类别标签和真实标签进行对比

预测类别标签
y_predict = clf.predict(x_test)
对比
pd.concat([pd.DataFrame(x_test), pd.DataFrame(y_test), pd.DataFrame(y_predict)], axis=1)

🛹🛹(3)输出分类的准确率

clf.fit(x_train, y_train)
score = clf.score(x_test, y_test)

🏍🛵🏍(4)调整参数比较不同算法(ID3, CART)的分类效果。

采用ID3算法进行计算
clf = tree.DecisionTreeClassifier(criterion="entropy")
采用CART算法进行计算
clf = tree.DecisionTreeClassifier(criterion="gini")

🚀🚀🚀完整代码:

# 导入相关库
from sklearn.model_selection import train_test_split
from sklearn import tree
from sklearn.datasets import load_wine
import pandas as pd
# 导入数据集
wine = load_wine()
X = wine.data
Y = wine.target
features_name = wine.feature_names
print(features_name)
print(pd.concat([pd.DataFrame(X), pd.DataFrame(Y)], axis=1))
# 打印数据
# 划分数据集,数据集划分为测试集占20%;
x_train, x_test, y_train, y_test = train_test_split(
        X, Y, test_size=0.2, random_state=0)

# 采用ID3算法进行计算
clf = tree.DecisionTreeClassifier(criterion="entropy")
# 采用CART算法进行计算
# clf = tree.DecisionTreeClassifier(criterion="gini")
# 获取模型
clf.fit(x_train, y_train)
score = clf.score(x_test, y_test)
y_predict = clf.predict(x_test)
print('准确率为:', score)
# 对测试集的预测类别标签和真实标签进行对比
print(pd.concat([pd.DataFrame(x_test), pd.DataFrame(y_test), pd.DataFrame(y_predict)], axis=1))

🚀🚀🚀结果:

在这里插入图片描述

🛰🛰🌌2.只需修改数据集,标签集即可

🚩🚩部分代码:

if __name__ == '__main__':
    def createDataSet():
        dataSet = [[1, 1, 1, 1, 'No'],
                   [1, 1, 1, 2,  'No'],
                   [2, 1, 1, 1,  'Yes'],
                   [3, 2, 1, 1,  'Yes'],
                   [3, 3, 2, 1,  'Yes'],
                   [3, 3, 2, 2,  'No'],
                   [2, 3, 2, 2,  'Yes'],
                   [1, 2, 1, 1,  'No'],
                   [1, 3, 2, 1,  'Yes'],
                   [3, 2, 2, 1,  'Yes'],
                   [1, 2, 2, 2,  'Yes'],
                   [2, 2, 1, 2,  'Yes'],
                   [2, 1, 2, 1,  'Yes'],
                   [3, 2, 1, 2,  'No'], ]
        features = ['outlook', 'temp', 'humidity', 'windy']

        return dataSet, features


    id3 = ID3Tree()  # 创建一个ID3决策树
    ds, labels = createDataSet()
    id3.getDataSet(ds, labels)
    id3.train()  # 训练ID3决策树
    print(id3.tree)  # 输出ID3决策树
    print(id3.predict(id3.tree, {'outlook': 2, 'temp': 2, 'humidity': 1, 'windy': 1}))
    treePlotter.createPlot(id3.tree)

🍽🍽🌼🌼结果:

在这里插入图片描述
在这里插入图片描述

目录
相关文章
|
6天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
100 66
|
3天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
8天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
40 5
|
8天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
41 0
|
2月前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
83 3
|
5月前
|
机器学习/深度学习 人工智能 算法
探索AI的魔法:机器学习与深度学习的奥秘
【8月更文挑战第27天】在这篇文章中,我们将深入探讨人工智能的两个重要分支:机器学习和深度学习。我们将首先理解它们的基本概念,然后通过Python代码示例,展示如何应用这些技术解决实际问题。无论你是AI新手,还是有经验的开发者,这篇文章都将为你提供新的知识和启示。让我们一起开启这场AI的魔法之旅吧!
|
5月前
|
机器学习/深度学习 人工智能 算法
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
156 0
|
7月前
|
机器学习/深度学习 人工智能 算法
人工智能(AI)、机器学习(ML)和深度学习(DL)
人工智能(AI)、机器学习(ML)和深度学习(DL)
194 1
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的无限可能:从机器学习到深度学习
【5月更文挑战第31天】本文旨在深入探讨人工智能(AI)的核心技术,包括机器学习和深度学习。我们将通过实例和案例研究,揭示这些技术如何改变我们的生活和工作方式。此外,我们还将讨论AI的未来发展趋势,以及它可能带来的挑战和机遇。
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理