Python - pydantic(3)错误处理

简介: Python - pydantic(3)错误处理

常见触发错误的情况


  • 如果传入的字段多了会自动过滤
  • 如果传入的少了会报错,必填字段
  • 如果传入的字段名称对不上也会报错
  • 如果传入的类型不对会自动转换,如果不能转换则会报错

 

错误的触发


pydantic 会在它正在验证的数据中发现错误时引发 ValidationError

 

注意

  • 验证代码不应该抛出 ValidationError 本身
  • 而是应该抛出 ValueError、TypeError、AssertionError 或他们的子类
  • ValidationError 会包含所有错误及其发生方式的信息

 

访问错误的方式


  • e.errors():返回输入数据中发现的错误的列表
  • e.json():以 JSON 格式返回错误(推荐)
  • str(e):以人类可读的方式返回错误

 

简单栗子


# 一定要导入 ValidationError
from pydantic import BaseModel, ValidationError
class Person(BaseModel):
    id: int
    name: str
try:
    # id是个int类型,如果不是int或者不能转换int会报错
    p = Person(id="ss", name="hallen")  
except ValidationError as e:
  # 打印异常消息
    print(e.errors())


e.errors() 的输出结果

[{'loc': ('id',), 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}]

 

e.json() 的输出结果

[
  {
    "loc": [
      "id"
    ],
    "msg": "value is not a valid integer",
    "type": "type_error.integer"
  }
]


str(e) 的输出结果

1 validation error for Person

id

 value isnot a valid integer (type=type_error.integer)

 

复杂栗子


class Location(BaseModel):
    lat = 0.1
    lng = 10.1
class Model(BaseModel):
    is_required: float
    gt_int: conint(gt=42)
    list_of_ints: List[int] = None
    a_float: float = None
    recursive_model: Location = None
data = dict(
    list_of_ints=['1', 2, 'bad'],
    a_float='not a float',
    recursive_model={'lat': 4.2, 'lng': 'New York'},
    gt_int=21
)
try:
    Model(**data)
except ValidationError as e:
    print(e.json(indent=4))


输出结果

[
    {
        "loc": [
            "is_required"
        ],
        "msg": "field required",
        "type": "value_error.missing"
    },
    {
        "loc": [
            "gt_int"
        ],
        "msg": "ensure this value is greater than 42",
        "type": "value_error.number.not_gt",
        "ctx": {
            "limit_value": 42
        }
    },
    {
        "loc": [
            "list_of_ints",
            2
        ],
        "msg": "value is not a valid integer",
        "type": "type_error.integer"
    },
    {
        "loc": [
            "a_float"
        ],
        "msg": "value is not a valid float",
        "type": "type_error.float"
    },
    {
        "loc": [
            "recursive_model",
            "lng"
        ],
        "msg": "value is not a valid float",
        "type": "type_error.float"
    }
]


  • value_error.missing:必传字段缺失
  • value_error.number.not_gt:字段值没有大于 42
  • type_error.integer:字段类型错误,不是 integer

 

自定义错误


# 导入 validator
from pydantic import BaseModel, ValidationError, validator
class Model(BaseModel):
    foo: str
    # 验证器
    @validator('foo')
    def name_must_contain_space(cls, v):
        if v != 'bar':
            # 自定义错误信息
            raise ValueError('value must be bar')
        # 返回传进来的值
        return v
try:
    Model(foo="ber")
except ValidationError as e:
    print(e.json())


输出结果

[
  {
    "loc": [
      "foo"
    ],
    "msg": "value must be bar",
    "type": "value_error"
  }
]


自定义错误模板类


from pydantic import BaseModel, PydanticValueError, ValidationError, validator
class NotABarError(PydanticValueError):
    code = 'not_a_bar'
    msg_template = 'value is not "bar", got "{wrong_value}"'
class Model(BaseModel):
    foo: str
    @validator('foo')
    def name_must_contain_space(cls, v):
        if v != 'bar':
            raise NotABarError(wrong_value=v)
        return v
try:
    Model(foo='ber')
except ValidationError as e:
    print(e.json())


输出结果

[
  {
    "loc": [
      "foo"
    ],
    "msg": "value is not \"bar\", got \"ber\"",
    "type": "value_error.not_a_bar",
    "ctx": {
      "wrong_value": "ber"
    }
  }
]


PydanticValueError

自定义错误类需要继承这个或者 PydanticTypeError


image.png

相关文章
|
JSON Java 数据格式
Python - pydantic(1) 入门介绍与 Models 的简单使用
Python - pydantic(1) 入门介绍与 Models 的简单使用
620 0
|
8月前
|
JSON API 数据安全/隐私保护
python小知识-数据验证和解析神器pydantic
Pydantic是一个Python库,用于数据验证和设置管理,基于类型提示提供数据模型验证。它可以用于用户输入验证、JSON序列化和解析,以及API交互中的数据校验。安装Pydantic可使用`pip install -U pydantic`或`conda install pydantic -c conda-forge`。通过定义BaseModel子类并使用Field进行约束,可以创建数据模型并进行验证。例如,定义User模型验证用户名、邮箱和年龄。Pydantic还支持自定义验证器,允许在字段赋值时执行特定逻辑,如密码强度检查和哈希处理。5月更文挑战第19天
174 1
|
Python
Python:使用pydantic库进行数据校验
Python:使用pydantic库进行数据校验
381 0
|
Python
Python - pydantic(2)嵌套模型
Python - pydantic(2)嵌套模型
615 0
|
Python
Python:使用pydantic库进行数据校验
Python:使用pydantic库进行数据校验
519 0
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
21天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
105 80
|
2月前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
155 59
|
10天前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
31 14