2.8 常见的时间复杂度
n的n方阶时间复杂度耗费的时间是最多的,最小的是常数阶
2.9最坏情况与平均情况
找东西有运气好的时候,也有怎么也找不到的情况。但在现实中,通常我们碰到的绝大多数既不是最好的也不是最坏的,所以算下来是平均情况居多。
算法的分析也是类似,我们查找-一个有n个随机数字数组中的某个数字,最好的情况是第一一个数字就是,那么算法的时间复杂度为0(1),但也有可能这个数字就在最后一个位置上待着,那么算法的时间复杂度就是0[n),这是最坏的一种情况了。
最坏情况运行时间是一种保证, 那就是运行时间将不会再坏了。在应用中,这是一种最重要的需求, 通常,除非特别指定,我们提到的运行时间都是最坏情况的运行时间。
平均运行时间也就是从概率的角度看,这个数字在每一个位置的可能性是相同的,所以平均的查找时间为n/2次后发现这个目标元素。
平均运行时间是所有情况中最有意义的,因为它是期望的运行时间。也就是说,我们运行一段程序代码时,是希望看到平均运行时间的。可现实中,平均运行时间很难通过分析得到,一般都是通过运行一定数量的实验数据后估算出来的。
对算法的分析,一种方法是计算所有情况的平均值,这种时间复杂度的计算方法称为平均时间复杂度。另一种方法是计算最坏情况下的时间复杂度,这种方法称为最坏时间复杂度。一般在没有特殊说明的情况下, 都是指最坏时间复杂度。
2.10 算法空间复杂度
算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作: S(n)= Of(n), 其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。
小例子理解
我们在写代码时,完全可以用空间来换取时间,比如说,要判断某某年是不是闰年,你可能会花一-点心思写 了一一个算法,而且由于是-一个算法,也就意味着,每次给一个年份,都是要通过计算得到是否是闰年的结果。还有另-“个办法就是,事先建立一个有2 050个元素的数组(年数略比现实多-点),然后把所有的年份按下标的数字对应,如果是闰年,此数组项的值就是1,如果不是值为0。这样,所谓的判断某一年是否是闰年,就变成了查找这个数组的某一项的值是多 少的问题。此时,我们的运算是最小化了,但是硬盘上或者内存中需要存储这2050个0和1。这是通过一笔空间上的开销来换取计算时间的小技巧
2.11 总结
数据结构和算法不分家,就像罗密欧与茱莉亚,梁山伯与祝英台,杨过和小龙女…
算法的定义:算法是解决特定问题求解步骤的描述,在计算机中为指令的有限序列,并且每条指令表示一个或多个操作。
算法的特性:有穷性、确定性、可行性、输入、输出。
算法的设计的要求:正确性、可读性、健壮性、高效率和低存储量需求。
算法特性与算法设计容易混,需要对比记忆。
算法的度量方法:事后统计方法(不科学、不准确)、事前分析估算方法。
推导大0阶
用常数1取代运行时间中的所有加法常数。
在修改后的运行次数函数中,只保留最高阶项。
如果最高阶项存在且不是1,则去除与这个项相乘的常数。
得到的结果就是大0阶。