大话数据结构--算法概述(三)

简介: 大话数据结构--算法概述(三)

2.8 常见的时间复杂度



image.png


n的n方阶时间复杂度耗费的时间是最多的,最小的是常数阶


2.9最坏情况与平均情况



找东西有运气好的时候,也有怎么也找不到的情况。但在现实中,通常我们碰到的绝大多数既不是最好的也不是最坏的,所以算下来是平均情况居多。


算法的分析也是类似,我们查找-一个有n个随机数字数组中的某个数字,最好的情况是第一一个数字就是,那么算法的时间复杂度为0(1),但也有可能这个数字就在最后一个位置上待着,那么算法的时间复杂度就是0[n),这是最坏的一种情况了。


最坏情况运行时间是一种保证, 那就是运行时间将不会再坏了。在应用中,这是一种最重要的需求, 通常,除非特别指定,我们提到的运行时间都是最坏情况的运行时间。


平均运行时间也就是从概率的角度看,这个数字在每一个位置的可能性是相同的,所以平均的查找时间为n/2次后发现这个目标元素。


平均运行时间是所有情况中最有意义的,因为它是期望的运行时间。也就是说,我们运行一段程序代码时,是希望看到平均运行时间的。可现实中,平均运行时间很难通过分析得到,一般都是通过运行一定数量的实验数据后估算出来的。


对算法的分析,一种方法是计算所有情况的平均值,这种时间复杂度的计算方法称为平均时间复杂度。另一种方法是计算最坏情况下的时间复杂度,这种方法称为最坏时间复杂度。一般在没有特殊说明的情况下, 都是指最坏时间复杂度。


2.10 算法空间复杂度



算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作: S(n)= Of(n), 其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。


小例子理解


我们在写代码时,完全可以用空间来换取时间,比如说,要判断某某年是不是闰年,你可能会花一-点心思写 了一一个算法,而且由于是-一个算法,也就意味着,每次给一个年份,都是要通过计算得到是否是闰年的结果。还有另-“个办法就是,事先建立一个有2 050个元素的数组(年数略比现实多-点),然后把所有的年份按下标的数字对应,如果是闰年,此数组项的值就是1,如果不是值为0。这样,所谓的判断某一年是否是闰年,就变成了查找这个数组的某一项的值是多 少的问题。此时,我们的运算是最小化了,但是硬盘上或者内存中需要存储这2050个0和1。这是通过一笔空间上的开销来换取计算时间的小技巧


2.11 总结



数据结构和算法不分家,就像罗密欧与茱莉亚,梁山伯与祝英台,杨过和小龙女…


算法的定义:算法是解决特定问题求解步骤的描述,在计算机中为指令的有限序列,并且每条指令表示一个或多个操作。


算法的特性:有穷性、确定性、可行性、输入、输出。


算法的设计的要求:正确性、可读性、健壮性、高效率和低存储量需求。


算法特性与算法设计容易混,需要对比记忆。


算法的度量方法:事后统计方法(不科学、不准确)、事前分析估算方法。


推导大0阶


用常数1取代运行时间中的所有加法常数。


在修改后的运行次数函数中,只保留最高阶项。


如果最高阶项存在且不是1,则去除与这个项相乘的常数。


得到的结果就是大0阶。

相关文章
|
26天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
38 1
|
29天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
97 4
|
3天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
41 20
|
27天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
27天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
102 23
|
1月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
60 20
|
26天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
57 1
|
1月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
51 0
|
1月前
|
算法 vr&ar 计算机视觉
数据结构之洪水填充算法(DFS)
洪水填充算法是一种基于深度优先搜索(DFS)的图像处理技术,主要用于区域填充和图像分割。通过递归或栈的方式探索图像中的连通区域并进行颜色替换。本文介绍了算法的基本原理、数据结构设计(如链表和栈)、核心代码实现及应用实例,展示了算法在图像编辑等领域的高效性和灵活性。同时,文中也讨论了算法的优缺点,如实现简单但可能存在堆栈溢出的风险等。
43 0