大话数据结构--算法概述(二)

简介: 大话数据结构--算法概述(二)

2.7 算法时间复杂度


在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定 T( n )的数量级。算法的时间复杂度,也就是算法的时间量度,记作: T (n)= O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。


这样用大写0( )来体现算法时间复杂度的记法,我们称之为大0记法。


一般情况下, 随着n的增大,T(n)增长最慢的算法为最优算法。


显然,由此算法时间复杂度的定义可知,我们的三个求和算法的时间复杂度分别为O(n), O(1), O(n2)。我们分别给它们取了非官方的名称,0(1)叫常数阶、0(n)叫线性阶、0(n2)叫平方阶,当然,还有其他的一些阶,之后会介绍


2.7.2 推导大0阶方法


那么如何分析一个算法的时间复杂度呢?即如何推导大0阶呢?


推导大O阶:


1.用常数1取代运行时间中的所有加法常数


2.在修改后的运行次数函数中,只保留最高阶项


3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。


得到的结果就是大O阶


哈,仿佛是得到了游戏攻略一样,我们好像已经得到了一个推导算法时间复杂度的万能公式。可事实上,分析一个算法的时间复杂度,没有这么简单,还需要多.看几个例子


2.7.3 常数阶


首先顺序结构的时间复杂度。下面这个算法,也就是刚才的第二种算法(高斯算法),为什么时间复杂度不是0(3),而是0(1)。


int sum = 0,n = 100;  /*执行一次*/
sum =(1+n)*n/2; /*执行一次*/
printf ( "8d", sum) ; /*执行一次*/


这个算法的运行次数函数是f (n) =3。 根据我们推导大0阶的方法,第一步就是把常数项3改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为O(1)


如果有多条sum,那么它的时间复杂度依旧是O(1),也叫常数阶


注意:不管这个常数是多少,。我们都记作O(),而不能是O(3). O(12)等其他任何数字


2.7.4 线性阶


线性阶的循环结构会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。


下面这段代码,它的循环的时间复杂度为O(n), 因为循环体中的代码须要执行n次。


#include <stdio.h>
void main()
{
    int sum;
    for (int i = 0; i < n; i++)
    {
        sum += i;
    }
    printf("%d",sum);
}


2.7.5 对数阶


int count=1;
while(count< n)
{
count = count * 2;
}


由于每次count乘以2之后,就距离n更近了一分。也就是说,有多少个2相乘后大于n,则会退出循环。由2^x=n 得到x=log2n。 所以这个循环的时间复杂度为

O(logn)。


2.7.6 平方阶


下面例子是一个循环嵌套,它的内循环刚才我们已经分析过,时间复杂度为

O(n)。


for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            /* code */
        }
    }


而对于外层的循环,不过是内部这个时间复杂度为O(n)的语句,再循环n次。所以这段代码的时间复杂度为0(n^2)。


下面这个循环嵌套,它的时间复杂度是多少呢?


for (int i = 0; i < n; i++)
    {
        for (j = i; j < n; j++)
        {
            /* code */
        }
    }


image.png


用我们推导大0阶的方法,第一条,没有加法常数不予考虑;第二条,只保留最高阶项,因此保留n2/2; 第三条,去除这个项相乘的常数,也就是去除1/2, 最终这段代码的时间复杂度为O(n^2)。


2.7.7 方法调用的时间复杂度分析


for (int i = 0; i < n; i++)    {        func(i)            }void func(int count){ printf(count);}


函数体是打印这个参数。其实这很好理解,function 函数的时间复杂度是O(1)。所以整体的时间复杂度为O(n)。


如果调用函数的内容有个循环,那么时间复杂度为O(n^2)


image.png

image.png


根据大O阶的方法,代码的时间复杂度也是O(n^2)


相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
49 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
117 4
|
11天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
49 20
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
112 23
|
2月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
62 20
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
65 1
|
2月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
58 0
|
2月前
|
算法 vr&ar 计算机视觉
数据结构之洪水填充算法(DFS)
洪水填充算法是一种基于深度优先搜索(DFS)的图像处理技术,主要用于区域填充和图像分割。通过递归或栈的方式探索图像中的连通区域并进行颜色替换。本文介绍了算法的基本原理、数据结构设计(如链表和栈)、核心代码实现及应用实例,展示了算法在图像编辑等领域的高效性和灵活性。同时,文中也讨论了算法的优缺点,如实现简单但可能存在堆栈溢出的风险等。
59 0