线程与更新UI,细谈原理(上)

简介: 相信不少读者都阅读过相类似的文章了,但是我还是想完整的把这之间的关系梳理清楚,细节聊好,希望你也能从中学到一些。

前言


相信不少读者都阅读过相类似的文章了,但是我还是想完整的把这之间的关系梳理清楚,细节聊好,希望你也能从中学到一些。


进入正题,大家应该都听过这样一句话——“UI更新要在主线程,子线程更新UI会崩溃”。久而久之就感觉这是个真理,甚至被认为是“官方结论”。


但是如果问你,官方什么时候在哪里说过这句话,你会不会有点懵。而且就算是官方说的,也就不一定对的是吧,众所周知,Google官方文档一直都有点说的不清不楚,需要我们进行大量实践得出实际的结论。


就好比之前的Android11更新文档,我也是看了好久,通过一个个实践才写出了适配指南,然后就发现其中一个比较明显的BUGGoogle官方有说过这样一句:


下面是首先需要关注的行为变更 (无论您应用的 targetSdkVersion 是多少):  外部存储访问权限  - 应用无法再访问外部存储空间中其他应用的文件。


其实经过实践会发现,外部存储访问权限还是会和targetSdkVersion有关,具体可以看这篇Android11适配指南。


废话有点多了,今天还是通过实践案例,看看这个关于线程和UI更新的 “官方结论” 正确吗?


案例一,子线程更新button文字


1)onCreate方法中更新了按钮显示文字,修改Button的宽度为固定或者wrap_content,都不崩溃。


<Button
        android:id="@+id/btn_ui"
        android:layout_width="100dp"
        android:layout_height="70dp"
        android:layout_centerInParent="true"
        android:text="我是一个按钮"
        />
        //或者
    <Button
        android:id="@+id/btn_ui"
        android:layout_width="wrap_content"
        android:layout_height="70dp"
        android:layout_centerInParent="true"
        android:text="我是一个按钮"
        />        
    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        setContentView(R.layout.activity_ui)
        thread {
            btn_ui.text="年轻人要讲武德"
        }
    }


2)onCreate方法中更新了按钮显示文字,加了延时。


Button的宽度为固定不崩溃。Button的宽度为wrap_content,崩溃报错——Only the original thread that created a view hierarchy can touch its views


<Button
        android:id="@+id/btn_ui"
        android:layout_width="100dp"
        android:layout_height="70dp"
        android:layout_centerInParent="true"
        android:text="我是一个按钮"
        />
        //或者
    <Button
        android:id="@+id/btn_ui"
        android:layout_width="wrap_content"
        android:layout_height="70dp"
        android:layout_centerInParent="true"
        android:text="我是一个按钮"
        />   
    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        setContentView(R.layout.activity_ui)
        thread {
         Thread.sleep(3000)
            btn_ui.text="年轻人要讲武德"
        }
    }


案例一分析


有点懵的感觉,不慌,来看看崩溃信息。


崩溃是在按钮宽度为wrap_content,也就是根据内容设定宽度,然后3秒之后去更新按钮文字,发生了崩溃。相比之下,有两个崩溃影响点需要注意下:


  • 宽度wrap_content。如果设置为固定值,是不会崩溃的,见案例2,所以是不是跟布局改变的逻辑有关呢?
  • 延时3秒。如果不延时的话,即使是wrap_content也不会崩溃,见案例1,所以是不是跟某些类的加载进度有关呢?


带着这些疑问去源码中找找答案。先看看崩溃日志:


android.view.ViewRootImpl$CalledFromWrongThreadException: Only the original thread that created a view hierarchy can touch its views.
        at android.view.ViewRootImpl.checkThread(ViewRootImpl.java:9219)
        at android.view.ViewRootImpl.requestLayout(ViewRootImpl.java:1600)
        at android.view.View.requestLayout(View.java:24884)


可以看到是ViewRootImplrequestLayout中检查线程的时候报错了,那我们就看看这个方法:


@Override
    public void requestLayout() {
        if (!mHandlingLayoutInLayoutRequest) {
            checkThread();
            mLayoutRequested = true;
            scheduleTraversals();
        }
    }
    void checkThread() {
        if (mThread != Thread.currentThread()) {
            throw new CalledFromWrongThreadException(
                    "Only the original thread that created a view hierarchy can touch its views.");
        }
    }


在解开谜底之前,我们先了解下ViewRootImpl


ViewRootImpl


Activity从创建到我们看到界面,其实是经历了两个过程:加载布局和绘制


  • 加载布局


加载布局其实就是我们常用的setContentView(int layoutResID)方法,这个方法主要做的就是新建了一个DecorView,然后根据activity设置的主题(theme)或者特征(Feature)加载不同的根布局文件,最后再加载layoutResID资源文件。为了方便大家理解,画了一张图:


0.png


这里的最后一步是调用了LayoutInflaterinflate()方法,这个方法只做了一件事,就是解析xml文件,然后根据节点生成了view对象。最后形成了一个完整的DOM结构,返回最顶层的根布局View。(DOM是一种文档对象模型,他的层次结构是除了顶级元素,所有元素都被包括到另外的元素节点中,有点像家谱树结构,很典型的就是html代码解析)


到这里,一个有完整view结构的DecorView就创建出来了,但是它还没有被绘制,也没有被显示到手机界面上。


  • 绘制


绘制的流程发生在handleResumeActivity中,熟悉app启动流程的朋友应该知道,handleResumeActivity方法是用来触发onResume方法的,这里也完成了DecorView的绘制。再来一张图:


1.png


  • 总结


由此我们可以得出一些结论:


1)setContentView用来新建DecorView并加载布局的资源文件。

2)onResume方法之后,会新建一个ViewRootImpl,作为DecorViewparentDecorView进行测量,布局和绘制等操作。

3)PhoneWindow作为Window的唯一子类,存储了DecorView变量,并对其进行管理,属于ActivityView交互的中间层。


分析崩溃


好了。再回来看看崩溃的原因:


void checkThread() {
        if (mThread != Thread.currentThread()) {
            throw new CalledFromWrongThreadException(
                    "Only the original thread that created a view hierarchy can touch its views.");
        }
    }


可以看到是因为当前线程currentThread不是mThread的时候,就会崩溃,报的错误是 “只有创建视图层次结构的原始线程才能触摸它的视图” ,看到这里是不是猜到一些了,这个mThread难道就是“创建视图的原始线程”?


通过查找,其实这个mThread是在ViewRootImpl被创建的时候赋值的:


public ViewRootImpl(Context context, Display display) {
    mThread = Thread.currentThread();
}


而通过上方分析Activity加载布局过程得知,ViewRootImpl实例化发生在onResume之后,用来绘制DecorViewwindow上。


所以我们就可以得知崩溃的真正原因,就是当前线程不是ViewRootImpl创建时候的线程就会崩溃。翻译的还是比较准确的,只有创建视图的原始线程才能修改这个视图,听起来也蛮有道理的,我创造了你才有权利改变你,有那味了。


然后再看看前面的案例:


  • 案例一,在onCreate中修改Button,这时候只是在修改DecorView,都没创建ViewRootImpl,也就没走到所以checkThread方法,当然不会崩溃了。ViewRootImpl的创建是在onResume之后。
  • 案例二,延时3秒之后,界面也绘制完成了,创建ViewRootImpl显然是在主线程完成的,所以mThread为主线程,而改变Button的线程为子线程,所以setText方法会触发requestLayout方法重新绘制,最终导致崩溃。


但是,Button的宽度设置为固定值咋又不崩溃了?难道就不会执行checkThread方法了?奇怪。


找找setText的源码可以发现,有一个方法是负责检查是否需要新的布局——checkForRelayout()


private void checkForRelayout() {
        // If we have a fixed width, we can just swap in a new text layout
        // if the text height stays the same or if the view height is fixed.
        if ((mLayoutParams.width != LayoutParams.WRAP_CONTENT
                || (mMaxWidthMode == mMinWidthMode && mMaxWidth == mMinWidth))
                && (mHint == null || mHintLayout != null)
                && (mRight - mLeft - getCompoundPaddingLeft() - getCompoundPaddingRight() > 0)) {
            if (mEllipsize != TextUtils.TruncateAt.MARQUEE) {
                // In a fixed-height view, so use our new text layout.
                if (mLayoutParams.height != LayoutParams.WRAP_CONTENT
                        && mLayoutParams.height != LayoutParams.MATCH_PARENT) {
                    autoSizeText();
                    invalidate();
                    return;
                }
               //...
            }
            // We lose: the height has changed and we have a dynamic height.
            // Request a new view layout using our new text layout.
            requestLayout();
            invalidate();
        } else {
            // Dynamic width, so we have no choice but to request a new
            // view layout with a new text layout.
            nullLayouts();
            requestLayout();
            invalidate();
        }
    }


可以看到,如果布局大小没有改变的话,我们是不会去执行requestLayout方法重新进行布局绘制的,只会调用autoSizeText方法计算文字大小,invalidate绘制文字本身,所以当我们宽高设置为固定值,setText()方法就不会执行到requestLayout()方法了,自然也就执行不到checkThread()方法了。


反思


解决了问题,还需要反思下,为什么需要checkThread检查线程呢?


  • 检查线程,其实就是检查更新UI操作的当前线程是不是当初创建UI的那个线程,这样就保证了线程安全,因为UI控件本身不是线程安全的,但是加锁又显得太重,会降低View加载效率,毕竟是跟交互相关的。所以就直接通过判断线程这一逻辑来形成一个单线程模型,保证View操作的线程安全。



目录
相关文章
|
3月前
|
安全 Java 数据库
一天十道Java面试题----第四天(线程池复用的原理------>spring事务的实现方式原理以及隔离级别)
这篇文章是关于Java面试题的笔记,涵盖了线程池复用原理、Spring框架基础、AOP和IOC概念、Bean生命周期和作用域、单例Bean的线程安全性、Spring中使用的设计模式、以及Spring事务的实现方式和隔离级别等知识点。
|
3月前
|
编解码 网络协议 API
Netty运行原理问题之Netty的主次Reactor多线程模型工作的问题如何解决
Netty运行原理问题之Netty的主次Reactor多线程模型工作的问题如何解决
|
2月前
|
存储 缓存 Java
什么是线程池?从底层源码入手,深度解析线程池的工作原理
本文从底层源码入手,深度解析ThreadPoolExecutor底层源码,包括其核心字段、内部类和重要方法,另外对Executors工具类下的四种自带线程池源码进行解释。 阅读本文后,可以对线程池的工作原理、七大参数、生命周期、拒绝策略等内容拥有更深入的认识。
120 29
什么是线程池?从底层源码入手,深度解析线程池的工作原理
|
29天前
|
Java 编译器 程序员
【多线程】synchronized原理
【多线程】synchronized原理
51 0
|
29天前
|
Java 应用服务中间件 API
nginx线程池原理
nginx线程池原理
26 0
|
2月前
|
存储 缓存 Java
JAVA并发编程系列(11)线程池底层原理架构剖析
本文详细解析了Java线程池的核心参数及其意义,包括核心线程数量(corePoolSize)、最大线程数量(maximumPoolSize)、线程空闲时间(keepAliveTime)、任务存储队列(workQueue)、线程工厂(threadFactory)及拒绝策略(handler)。此外,还介绍了四种常见的线程池:可缓存线程池(newCachedThreadPool)、定时调度线程池(newScheduledThreadPool)、单线程池(newSingleThreadExecutor)及固定长度线程池(newFixedThreadPool)。
|
3月前
|
存储 NoSQL Java
线程池的原理与C语言实现
【8月更文挑战第22天】线程池是一种多线程处理框架,通过复用预创建的线程来高效地处理大量短暂或临时任务,提升程序性能。它主要包括三部分:线程管理器、工作队列和线程。线程管理器负责创建与管理线程;工作队列存储待处理任务;线程则执行任务。当提交新任务时,线程管理器将其加入队列,并由空闲线程处理。使用线程池能减少线程创建与销毁的开销,提高响应速度,并能有效控制并发线程数量,避免资源竞争。这里还提供了一个简单的 C 语言实现示例。
|
3月前
|
存储 Java
线程池的底层工作原理是什么?
【8月更文挑战第8天】线程池的底层工作原理是什么?
108 8
|
2月前
|
安全 Java API
Java线程池原理与锁机制分析
综上所述,Java线程池和锁机制是并发编程中极其重要的两个部分。线程池主要用于管理线程的生命周期和执行并发任务,而锁机制则用于保障线程安全和防止数据的并发错误。它们深入地结合在一起,成为Java高效并发编程实践中的关键要素。
29 0
|
4月前
|
存储 SQL Java
(七)全面剖析Java并发编程之线程变量副本ThreadLocal原理分析
在之前的文章:彻底理解Java并发编程之Synchronized关键字实现原理剖析中我们曾初次谈到线程安全问题引发的"三要素":多线程、共享资源/临界资源、非原子性操作,简而言之:在同一时刻,多条线程同时对临界资源进行非原子性操作则有可能产生线程安全问题。