前言
很多时候,我们将不得不从数据库或另一个Web服务获取数据或从文件系统加载数据。在涉及网络呼叫的情况下,将存在固有的网络等待时间,网络带宽限制。解决此问题的方法之一是在应用程序本地拥有一个缓存。
如果您的应用程序跨越多个节点,则缓存将位于每个节点本地,从而导致固有的数据不一致。可以权衡此数据不一致以提高吞吐量和降低延迟。但是有时,如果数据不一致会产生重大差异,则可以减少缓存对象的ttl(生存时间),从而减少数据不一致可能发生的持续时间。
在实现本地缓存的多种方法中,我在高负载环境中使用的一种方法是Guava缓存。我们使用了缓存来每秒处理80,000个以上的请求。延迟的90%约为5毫秒。这帮助我们扩展了有限的网络带宽需求。
在本文中,我将展示如何添加一层Guava缓存以避免频繁的网络呼叫。为此,我选择了一个非常简单的示例,以使用Google Books API的书的ISBN来获取书的详细信息。
使用ISBN13字符串获取图书详细信息的示例请求为:https://www.googleapis.com/books/v1/volumes?q=isbn:9781449370770&key={API_KEY}
响应
响应信息如下图所示:
可以在此处找到有关Guava Cache功能的非常详细的说明。在此示例中,我将使用LoadingCache。LoadingCache接收一个代码块,该代码块用于将数据加载到缓存中以查找丢失的密钥。因此,当您使用不存在的键进行缓存时,LoadingCache将使用CacheLoader提取数据并将其设置在缓存中,然后将其返回给调用方。
实体类
现在让我们看一下表示书籍详细信息所需的模型类:
- Book class
- Author class
//Book.java package info.sanaulla.model; import java.util.ArrayList; import java.util.Date; import java.util.List; public class Book { private String isbn13; private List<Author> authors; private String publisher; private String title; private String summary; private Integer pageCount; private String publishedDate; public String getIsbn13() { return isbn13; } public void setIsbn13(String isbn13) { this.isbn13 = isbn13; } public List<Author> getAuthors() { return authors; } public void setAuthors(List<Author> authors) { this.authors = authors; } public String getPublisher() { return publisher; } public void setPublisher(String publisher) { this.publisher = publisher; } public String getTitle() { return title; } public void setTitle(String title) { this.title = title; } public String getSummary() { return summary; } public void setSummary(String summary) { this.summary = summary; } public void addAuthor(Author author){ if ( authors == null ){ authors = new ArrayList<Author>(); } authors.add(author); } public Integer getPageCount() { return pageCount; } public void setPageCount(Integer pageCount) { this.pageCount = pageCount; } public String getPublishedDate() { return publishedDate; } public void setPublishedDate(String publishedDate) { this.publishedDate = publishedDate; } }
//Author.java package info.sanaulla.model; public class Author { private String name; public String getName() { return name; } public void setName(String name) { this.name = name; } }
实现
现在让我们定义一个服务,该服务将从Google Books REST API中获取数据,并将其称为BookService。该服务执行以下操作:
- 从REST API获取HTTP响应。
- 使用Jackson的ObjectMapper将JSON解析为Map。
- 从步骤2中获得的Map对象中获取相关信息。
从BookService中提取了一些操作到Util类中,即:
- 读取包含Google图书API密钥的application.yml文件
- 向REST API发出HTTP请求并返回JSON响应。
//Util.java package info.sanaulla; import com.fasterxml.jackson.databind.ObjectMapper; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.net.HttpURLConnection; import java.net.ProtocolException; import java.net.URL; import java.util.ArrayList; import java.util.List; import java.util.Properties; public class Util { private static ObjectMapper objectMapper = new ObjectMapper(); private static Properties properties = null; public static ObjectMapper getObjectMapper(){ return objectMapper; } public static Properties getProperties() throws IOException { if ( properties != null){ return properties; } properties = new Properties(); InputStream inputStream = Util.class.getClassLoader().getResourceAsStream("application.properties"); properties.load(inputStream); return properties; } public static String getHttpResponse(String urlStr) throws IOException { URL url = new URL(urlStr); HttpURLConnection conn = (HttpURLConnection) url.openConnection(); conn.setRequestMethod("GET"); conn.setRequestProperty("Accept", "application/json"); conn.setConnectTimeout(5000); conn.setReadTimeout(20000); if (conn.getResponseCode() != 200) { throw new RuntimeException("Failed : HTTP error code : " + conn.getResponseCode()); } BufferedReader br = new BufferedReader(new InputStreamReader( (conn.getInputStream()))); StringBuilder outputBuilder = new StringBuilder(); String output; while ((output = br.readLine()) != null) { outputBuilder.append(output); } conn.disconnect(); return outputBuilder.toString(); } }
//BookService.java package info.sanaulla.service; import com.fasterxml.jackson.databind.ObjectMapper; import com.google.common.base.Optional; import com.google.common.base.Strings; import info.sanaulla.Constants; import info.sanaulla.Util; import info.sanaulla.model.Author; import info.sanaulla.model.Book; import java.io.IOException; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.Arrays; import java.util.List; import java.util.Map; import java.util.Properties; public class BookService { public static Optional<Book> getBookDetailsFromGoogleBooks(String isbn13) throws IOException{ Properties properties = Util.getProperties(); String key = properties.getProperty(Constants.GOOGLE_API_KEY); String url = "https://www.googleapis.com/books/v1/volumes?q=isbn:"+isbn13; String response = Util.getHttpResponse(url); Map bookMap = Util.getObjectMapper().readValue(response,Map.class); Object bookDataListObj = bookMap.get("items"); Book book = null; if ( bookDataListObj == null || !(bookDataListObj instanceof List)){ return Optional.fromNullable(book); } List bookDataList = (List)bookDataListObj; if ( bookDataList.size() < 1){ return Optional.fromNullable(null); } Map bookData = (Map) bookDataList.get(0); Map volumeInfo = (Map)bookData.get("volumeInfo"); book = new Book(); book.setTitle(getFromJsonResponse(volumeInfo,"title","")); book.setPublisher(getFromJsonResponse(volumeInfo,"publisher","")); List authorDataList = (List)volumeInfo.get("authors"); for(Object authorDataObj : authorDataList){ Author author = new Author(); author.setName(authorDataObj.toString()); book.addAuthor(author); } book.setIsbn13(isbn13); book.setSummary(getFromJsonResponse(volumeInfo,"description","")); book.setPageCount(Integer.parseInt(getFromJsonResponse(volumeInfo, "pageCount", "0"))); book.setPublishedDate(getFromJsonResponse(volumeInfo,"publishedDate","")); return Optional.fromNullable(book); } private static String getFromJsonResponse(Map jsonData, String key, String defaultValue){ return Optional.fromNullable(jsonData.get(key)).or(defaultValue).toString(); } }
在Google Books API调用的顶部添加缓存
我们可以使用Guava库提供的CacheBuilder API创建一个缓存对象。它提供了设置属性的方法,例如
- 缓存中的最大项目数
- 基于缓存对象的上次写入时间或上次访问时间的生存时间,
- ttl用于刷新缓存对象,
- 在缓存中记录统计信息,例如命中,未命中,加载时间和
- 提供加载程序代码以在高速缓存未命中或高速缓存刷新的情况下获取数据。
因此,我们理想地希望的是,缓存未命中应调用上面编写的API,即getBookDetailsFromGoogleBooks。我们希望最多存储1000个项目,并在24小时后使这些项目过期。因此,构建缓存的代码如下:
private static LoadingCache<String, Optional<Book>> cache = CacheBuilder.newBuilder() .maximumSize(1000) .expireAfterAccess(24, TimeUnit.HOURS) .recordStats() .build(new CacheLoader<String, Optional<Book>>() { @Override public Optional<Book> load(String s) throws IOException { return getBookDetailsFromGoogleBooks(s); } });
重要的是要注意,要存储在缓存中的最大项目会影响应用程序使用的堆。因此,您必须根据要缓存的每个对象的大小以及分配给应用程序的最大堆内存来仔细确定该值。
让我们付诸实践,并查看缓存统计信息如何报告统计信息:
package info.sanaulla; import com.google.common.cache.CacheStats; import info.sanaulla.model.Book; import info.sanaulla.service.BookService; import java.io.IOException; import java.util.Properties; import java.util.concurrent.ExecutionException; public class App { public static void main( String[] args ) throws IOException, ExecutionException { Book book = BookService.getBookDetails("9780596009205").get(); System.out.println(Util.getObjectMapper().writeValueAsString(book)); book = BookService.getBookDetails("9780596009205").get(); book = BookService.getBookDetails("9780596009205").get(); book = BookService.getBookDetails("9780596009205").get(); book = BookService.getBookDetails("9780596009205").get(); CacheStats cacheStats = BookService.getCacheStats(); System.out.println(cacheStats.toString()); } }
响应如下
{"isbn13":"9780596009205","authors":[{"name":"Kathy Sierra"},{"name":"Bert Bates"}],"publisher":"\"O'Reilly Media, Inc.\"","title":"Head First Java","summary":"An interactive guide to the fundamentals of the Java programming language utilizes icons, cartoons, and numerous other visual aids to introduce the features and functions of Java and to teach the principles of designing and writing Java programs.","pageCount":688,"publishedDate":"2005-02-09"}
以上是对Google Guava作为本地缓存的简单实用!