【小家java】HashMap原理、TreeMap、ConcurrentHashMap的原理、性能、安全方面大解析-----看这一篇就够了(中)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 【小家java】HashMap原理、TreeMap、ConcurrentHashMap的原理、性能、安全方面大解析-----看这一篇就够了(中)

HashMap的扩容机制 resize()


我们分析下resize的源码,鉴于JDK1.8融入了红黑树,较复杂,为了便于理解我们仍然使用JDK1.7的代码,好理解一些,本质上区别不大,具体区别后文再说。


JDK8以后引入了红黑树对查询新能进行了优化。当Hash桶里面的数量大于8或者总容量大于64,就会转为红黑树。这里推荐一篇文章,从源码级别详解这个过程:红黑树在HashMap中的应用


void resize(int newCapacity) {   //传入新的容量  
    Entry[] oldTable = table;    //引用扩容前的Entry数组  
    int oldCapacity = oldTable.length;  
    if (oldCapacity == MAXIMUM_CAPACITY) {  //扩容前的数组大小如果已经达到最大(2^30)了  
        threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了  
        return;  
    }  
    Entry[] newTable = new Entry[newCapacity];  //初始化一个新的Entry数组  
    transfer(newTable);                         //!!将数据转移到新的Entry数组里  
    table = newTable;                           //HashMap的table属性引用新的Entry数组  
    threshold = (int) (newCapacity * loadFactor);//修改阈值  
}

这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。


void transfer(Entry[] newTable) {  
    Entry[] src = table;                   //src引用了旧的Entry数组  
    int newCapacity = newTable.length;  
    for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组  
        Entry<K, V> e = src[j];             //取得旧Entry数组的每个元素  
        if (e != null) {  
            src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)  
            do {  
                Entry<K, V> next = e.next;  
                int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置  
                e.next = newTable[i]; //标记[1]  
                newTable[i] = e;      //将元素放在数组上  
                e = next;             //访问下一个Entry链上的元素  
            } while (e != null);  
        }  
    }  
}  
static int indexFor(int h, int length) {  
    return h & (length - 1);  
}

在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。


下面我们讲解下JDK1.8做了哪些优化。经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,经过rehash之后,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。对应的就是下方的resize的注释:


/** 
 * Initializes or doubles table size.  If null, allocates in 
 * accord with initial capacity target held in field threshold. 
 * Otherwise, because we are using power-of-two expansion, the 
 * elements from each bin must either stay at same index, or move 
 * with a power of two offset in the new table. 
 * 
 * @return the table 
 */  
final Node<K,V>[] resize() {


看下图可以明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。


image.png


元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:


image.png


因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图:

image.png


这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8不会倒置。有兴趣的同学可以研究下JDK1.8的resize源码,写的很赞。


为何HashMap的数组长度一定是2的次幂?


如果数组进行扩容,数组长度发生变化,而存储位置 index = h&(length-1),index也可能会发生变化,需要重新计算index,我们先来看看transfer这个方法


void transfer(Entry[] newTable, boolean rehash) {
        int newCapacity = newTable.length;
     //for循环中的代码,逐个遍历链表,重新计算索引位置,将老数组数据复制到新数组中去(数组不存储实际数据,所以仅仅是拷贝引用而已)
        for (Entry<K,V> e : table) {
            while(null != e) {
                Entry<K,V> next = e.next;
                if (rehash) {
                    e.hash = null == e.key ? 0 : hash(e.key);
                }
                int i = indexFor(e.hash, newCapacity);
          //将当前entry的next链指向新的索引位置,newTable[i]有可能为空,有可能也是个entry链,如果是entry链,直接在链表头部插入。
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            }
        }
    }


这个方法将老数组中的数据逐个链表地遍历,扔到新的扩容后的数组中,我们的数组索引位置的计算是通过 对key值的hashcode进行hash扰乱运算后,再通过和 length-1进行位运算得到最终数组索引位置。


hashMap的数组长度一定保持2的次幂,比如16的二进制表示为 10000,那么length-1就是15,二进制为01111,同理扩容后的数组长度为32,二进制表示为100000,length-1为31,二进制表示为011111。从下图可以我们也能看到这样会保证低位全为1,而扩容后只有一位差异,也就是多出了最左位的1,这样在通过 h&(length-1)的时候,只要h对应的最左边的那一个差异位为0,就能保证得到的新的数组索引和老数组索引一致(大大减少了之前已经散列良好的老数组的数据位置重新调换),个人理解。


image.png


还有,数组长度保持2的次幂,length-1的低位都为1,会使得获得的数组索引index更加均匀,比如:


image.png


我们看到,上面的&运算,高位是不会对结果产生影响的(hash函数采用各种位运算可能也是为了使得低位更加散列),我们只关注低位bit,如果低位全部为1,那么对于h低位部分来说,任何一位的变化都会对结果产生影响,也就是说,要得到index=21这个存储位置,h的低位只有这一种组合。这也是数组长度设计为必须为2的次幂的原因。


image.png


get方法的实现相对简单,key(hashcode)–>hash–>indexFor–>最终索引位置,找到对应位置table[i],再查看是否有链表,遍历链表,通过key的equals方法比对查找对应的记录。要注意的是,有人觉得上面在定位到数组位置之后然后遍历链表的时候,e.hash == hash这个判断没必要,仅通过equals判断就可以。其实不然,试想一下,如果传入的key对象重写了equals方法却没有重写hashCode,而恰巧此对象定位到这个数组位置,如果仅仅用equals判断可能是相等的,但其hashCode和当前对象不一致,这种情况,根据Object的hashCode的约定,不能返回当前对象,而应该返回null。

为何建议:重写equals方法需同时重写hashCode方法


各种资料上都会提到,“重写equals时也要同时覆盖hashcode”,我们举个小例子来看看,如果重写了equals而不重写hashcode会发生什么样的问题


/**
 * Created by chengxiao on 2016/11/15.
 */
public class MyTest {
    private static class Person{
        int idCard;
        String name;
        public Person(int idCard, String name) {
            this.idCard = idCard;
            this.name = name;
        }
        @Override
        public boolean equals(Object o) {
            if (this == o) {
                return true;
            }
            if (o == null || getClass() != o.getClass()){
                return false;
            }
            Person person = (Person) o;
            //两个对象是否等值,通过idCard来确定
            return this.idCard == person.idCard;
        }
    }
    public static void main(String []args){
        HashMap<Person,String> map = new HashMap<Person, String>();
        Person person = new Person(1234,"乔峰");
        //put到hashmap中去
        map.put(person,"天龙八部");
        //get取出,从逻辑上讲应该能输出“天龙八部”
        System.out.println("结果:"+map.get(new Person(1234,"萧峰")));
    }
}
输出:
null


理解了HashMap的基本原理,这个肯定很好理解了。因为indexFor–>最终索引位置不一样了,最怕的不是返回null,而是可能返回了一个错误的值,那就最尴尬了。


所以,在重写equals的方法的时候,必须注意重写hashCode方法,同时还要保证通过equals判断相等的两个对象,调用hashCode方法要返回同样的整数值。而如果equals判断不相等的两个对象,其hashCode可以相同(只不过会发生哈希冲突,应尽量避免)。


HashMap的API简单解析


void                 clear()
Object               clone()
boolean              containsKey(Object key)
boolean              containsValue(Object value)
Set<Entry<K, V>>     entrySet()
V                    get(Object key)
boolean              isEmpty()
Set<K>               keySet()
V                    put(K key, V value)
void                 putAll(Map<? extends K, ? extends V> map)
V                    remove(Object key)
int                  size()
Collection<V>        values()


clear() 的作用是清空HashMap。它是通过将所有的元素设为null来实现的。

public void clear() {
    modCount++;
    Entry[] tab = table;
    for (int i = 0; i < tab.length; i++)
        tab[i] = null;
    size = 0;
}


containsKey() 的作用是判断HashMap是否包含key。

public boolean containsKey(Object key) {
    return getEntry(key) != null;
}
containsKey() 首先通过getEntry(key)获取key对应的Entry,然后判断该Entry是否为null。


这里面其实很多人想问:为什么key是Object类型,这样很不方便啊。比如我们的key是Long类型,然后contans(Integer)类型,是永远get不出来数据。其实这不算Java的bug的,因为java的泛型是1.5以后才引入的,所以为了向下兼容,这里不能和get(K k)一样采用泛型,希望大家能够理解.


备注:HashMap将“key为null”的元素都放在table的位置0处,即table[0]中;“key不为null”的放在table的其余位置!


相关文章
|
4月前
|
机器学习/深度学习 安全 大数据
揭秘!企业级大模型如何安全高效私有化部署?全面解析最佳实践,助你打造智能业务新引擎!
【10月更文挑战第24天】本文详细探讨了企业级大模型私有化部署的最佳实践,涵盖数据隐私与安全、定制化配置、部署流程、性能优化及安全措施。通过私有化部署,企业能够完全控制数据,确保敏感信息的安全,同时根据自身需求进行优化,提升计算性能和处理效率。示例代码展示了如何利用Python和TensorFlow进行文本分类任务的模型训练。
293 6
|
5月前
|
存储 Java
Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。
【10月更文挑战第19天】本文详细介绍了Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。HashMap以其高效的插入、查找和删除操作著称,而TreeMap则擅长于保持元素的自然排序或自定义排序,两者各具优势,适用于不同的开发场景。
68 1
|
5月前
|
存储 安全 Java
Java Map新玩法:探索HashMap和TreeMap的高级特性,让你的代码更强大!
【10月更文挑战第17天】Java Map新玩法:探索HashMap和TreeMap的高级特性,让你的代码更强大!
116 2
|
5月前
|
存储 Java 开发者
Java Map实战:用HashMap和TreeMap轻松解决复杂数据结构问题!
【10月更文挑战第17天】本文深入探讨了Java中HashMap和TreeMap两种Map类型的特性和应用场景。HashMap基于哈希表实现,支持高效的数据操作且允许键值为null;TreeMap基于红黑树实现,支持自然排序或自定义排序,确保元素有序。文章通过具体示例展示了两者的实战应用,帮助开发者根据实际需求选择合适的数据结构,提高开发效率。
130 2
|
5月前
|
存储 缓存 安全
HashMap VS TreeMap:谁才是Java Map界的王者?
HashMap VS TreeMap:谁才是Java Map界的王者?
200 2
|
1月前
|
人工智能 监控 安全
Java智慧工地(源码):数字化管理提升施工安全与质量
随着科技的发展,智慧工地已成为建筑行业转型升级的重要手段。依托智能感知设备和云物互联技术,智慧工地为工程管理带来了革命性的变革,实现了项目管理的简单化、远程化和智能化。
39 5
|
5月前
|
存储 开发者
HashMap和Hashtable的key和value可以为null吗,ConcurrentHashMap呢
HashMap的key可以为null,value也可以为null;Hashtable的key不允许为null,value也不能为null;ConcurrentHashMap的key不允许为null
|
3月前
|
域名解析 负载均衡 安全
DNS技术标准趋势和安全研究
本文探讨了互联网域名基础设施的结构性安全风险,由清华大学段教授团队多年研究总结。文章指出,DNS系统的安全性不仅受代码实现影响,更源于其设计、实现、运营及治理中的固有缺陷。主要风险包括协议设计缺陷(如明文传输)、生态演进隐患(如单点故障增加)和薄弱的信任关系(如威胁情报被操纵)。团队通过多项研究揭示了这些深层次问题,并呼吁构建更加可信的DNS基础设施,以保障全球互联网的安全稳定运行。
|
4月前
|
SQL 安全 Java
Java 异常处理:筑牢程序稳定性的 “安全网”
本文深入探讨Java异常处理,涵盖异常的基础分类、处理机制及最佳实践。从`Error`与`Exception`的区分,到`try-catch-finally`和`throws`的运用,再到自定义异常的设计,全面解析如何有效管理程序中的异常情况,提升代码的健壮性和可维护性。通过实例代码,帮助开发者掌握异常处理技巧,确保程序稳定运行。
84 2
|
4月前
|
SQL 安全 Java
安全问题已经成为软件开发中不可忽视的重要议题。对于使用Java语言开发的应用程序来说,安全性更是至关重要
在当今网络环境下,Java应用的安全性至关重要。本文深入探讨了Java安全编程的最佳实践,包括代码审查、输入验证、输出编码、访问控制和加密技术等,帮助开发者构建安全可靠的应用。通过掌握相关技术和工具,开发者可以有效防范安全威胁,确保应用的安全性。
83 4

热门文章

最新文章

推荐镜像

更多