Google Earth Engine(GEE)——环境监测和建模的必看论文推荐

简介: Google Earth Engine(GEE)——环境监测和建模的必看论文推荐

必读资料

基础景观生态

  1. Turner, M. G. 1989. Landscape Ecology: The Effect of Pattern on Process. Annual Review of Ecology and Systematics 20:171–197.
  2. Pickett, S. T. A., and M. L. Cadenasso. 1995. Landscape Ecology: Spatial Heterogeneity in Ecological Systems. Science 269:331–334.
  3. Levin, S. A. 1992. The Problem of Pattern and Scale in Ecology:The Robert H. MacArthur Award Lecture. Ecology 73:1943.
  4. Wu, J., and O. L. Loucks. 1995. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Quarterly review of biology 70:439–466.
  5. Wu, J., and R. Hobbs. 2002. Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape Ecology 17:355–365.
  6. Scholes, R. J. 2017. Taking the Mumbo Out of the Jumbo: Progress Towards a Robust Basis for Ecological Scaling. Ecosystems 20:4–13.


生态系统监测遥感

  1. Newton, A. C., R. A. Hill, C. Echeverría, D. Golicher, J. M. Rey Benayas, L. Cayuela, and S. A. Hinsley. 2009. Remote sensing and the future of landscape ecology. Progress in Physical Geography 33:528–546.
  2. Willis, K. S. 2015. Remote sensing change detection for ecological monitoring in United States protected areas. Biological Conservation 182:233–242.
  3. Corbane, C., S. Lang, K. Pipkins, S. Alleaume, M. Deshayes, V. E. García Millán, T. Strasser, J. Vanden Borre, S. Toon, and F. Michael. 2015. Remote sensing for mapping natural habitats and their conservation status – New opportunities and challenges. International Journal of Applied Earth Observation and Geoinformation 37:7–16.
  4. Lawley, V., M. Lewis, K. Clarke, and B. Ostendorf. 2016. Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review. Ecological Indicators 60:1273–1283.

基于云处理的新时代

  1. Joshi, A. R., E. Dinerstein, E. Wikramanayake, M. L. Anderson, D. Olson, B. S. Jones, J. Seidensticker, S. Lumpkin, M. C. Hansen, N. C. Sizer, C. L. Davis, S. Palminteri, and N. R. Hahn. 2016. Tracking changes and preventing loss in critical tiger habitat. Science Advances, vol 2, no 4.
  2. Pekel, J.-F., A. Cottam, N. Gorelick, and A. S. Belward. 2016. High-resolution mapping of global surface water and its long-term changes. Nature 540:418–422.
  3. Hansen, M. C., P. V Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342:850-853.


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2698 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
253 0
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
667 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
API Go 网络架构
GEE Colab——如何从本地/Google云盘/Google Cloud Storage (GCS)上传和下载
GEE Colab——如何从本地/Google云盘/Google Cloud Storage (GCS)上传和下载
372 4
|
7月前
|
机器学习/深度学习 存储 人工智能
GEE Colab——初学者福音快速入门 Google Colab(Colaboratory)
GEE Colab——初学者福音快速入门 Google Colab(Colaboratory)
255 3
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
101 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
165 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
88 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
291 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
148 0

热门文章

最新文章