Google Earth Engine——Proba-V数据集包含:土地覆盖和植被生长,该传感器收集三个VNIR(可见光和近红外)波段和一个SWIR(短波红外)波段的数据,视场为2250公里。

简介: Google Earth Engine——Proba-V数据集包含:土地覆盖和植被生长,该传感器收集三个VNIR(可见光和近红外)波段和一个SWIR(短波红外)波段的数据,视场为2250公里。

Proba-V is a satellite mission tasked to map land cover and vegetation growth. It was designed to provide continuity for the VGT optical instrument from the SPOT-4 and SPOT-5 missions.

 

The sensor collects data in three VNIR (visible and near-infrared) bands and one SWIR (short-wave infrared) spectral band with a 2250km field of view. Global images are produced every 2 days at 300m resolution, and a 100m image from nadir observations every 5 days. These images are later composited to produce this daily synthesis dataset. The description of the compositing and atmospheric correction procedures can be found in the user manual.

The reflectances provided in this dataset are presented as Digital Count Numbers (DN) and must be converted according to the guidelines in Section 4.6.1 of the user manual.


Proba-V是一项卫星任务,负责绘制土地覆盖和植被生长图。它旨在为SPOT-4和SPOT-5任务中的VGT光学仪器提供延续性。

该传感器收集三个VNIR(可见光和近红外)波段和一个SWIR(短波红外)波段的数据,视场为2250公里。每2天产生300米分辨率的全球图像,每5天从天底观测产生100米图像。这些图像随后被合成,以产生这个每日综合数据集。关于合成和大气校正程序的描述可以在用户手册中找到。

该数据集提供的反射率以数字计数(DN)的形式呈现,必须根据用户手册第4.6.1节的指南进行转换。

Dataset Availability

2013-10-17T00:00:00 - 2021-09-18T00:00:00

Dataset Provider

Vito / ESA

Collection Snippet

Copied

ee.ImageCollection("VITO/PROBAV/C1/S1_TOC_100M")

Resolution

100 meters

Bands Table

Name Description Units Wavelength
RED Top of canopy reflectance RED channel 658nm, FWHM: 82nm
NIR Top of canopy reflectance NIR channel 834nm, FWHM: 121nm
BLUE Top of canopy reflectance BLUE channel 460nm, FWHM: 42nm
SWIR Top of canopy reflectance SWIR channel 1610nm, FWHM: 89nm
NDVI Normalized Difference Vegetation Index
SZA Solar zenith angle Degrees
SAA Solar azimuth angle Degrees
SWIRVAA Viewing azimuth angles SWIR detector Degrees
SWIRVZA Viewing zenith angle SWIR detector Degree
VNIRVAA Viewing azimuth angle VNIR detector Degrees
VNIRVZA Viewing zenith angle VNIR detector Degrees
SM Quality / Information band.
SM Bitmask
  • Bits 0-2: Cloud/ice snow/shadow flag
    • 0: Clear
    • 1: Shadow
    • 2: Undefined
    • 3: Cloud
    • 4: Ice
  • Bit 3: Land/sea
    • 0: Sea
    • 1: Land (pixels with this value may include areas of sea)
  • Bit 4: Radiometric quality SWIR flag
    • 0: Bad
    • 1: Good
  • Bit 5: Radiometric quality NIR flag
    • 0: Bad
    • 1: Good
  • Bit 6: Radiometric quality RED flag
    • 0: Bad
    • 1: Good
  • Bit 7: Radiometric quality BLUE flag
    • 0: Bad
    • 1: Good
TIME Time elapsed since the start of image collection of this mosaic Minutes

影像属性:

Name Type Description
ARCHIVING_DATE String Archiving date
CLOUD_COVER_PERCENTAGE Double Cloud cover percentage
LAND_PERCENTAGE Double Land percentage
MISSING_DATA_PERCENTAGE Double Missing data percentage
PROBAV_ATMCORR_SMAC_VERSION String Initial version of the atmospheric correction algorithm
PROBAV_CLOUDICESNOWDETECTION_VERSION String Initial version of the cloud and snow/ice detection algorithm
PROBAV_COMPOSITING_MVC_VERSION String Initial version of the MVC compositing algorithm
PROBAV_GEOMODELLING_VERSION String Initial version of the geometric modelling algorithm
PROBAV_MAPPING_VERSION String Initial version of the projection algorithm
PROBAV_MOSAIC_VERSION String Initial version of the mosaicking algorithm
PROBAV_RADIOMODELLING_VERSION String Initial version of the radiometric modelling algorithm
PROBAV_SHADOWDETECTION_VERSION String Initial version of the shadow detection algorithm
PRODUCT_VERSION String Product version
SNOW_COVER_PERCENTAGE Double Snow cover percentage


使用说明:

PROBA-V 300m and 100m data are freely available for data older than 1 month.

Copyright ESA-BELSPO, produced by Vito

版本:

PROBA-V C1 Top Of Canopy Daily Synthesis 100m

代码:

var dataset = ee.ImageCollection('VITO/PROBAV/C1/S1_TOC_100M')
                  .filter(ee.Filter.date('2018-03-01', '2018-04-01'));
var falseColor = dataset.select(['RED', 'NIR', 'BLUE']);
var falseColorVis = {
  min: 20.0,
  max: 2000.0,
};
Map.setCenter(17.93, 7.71, 2);
Map.addLayer(falseColor, falseColorVis, 'False Color');

版本:

PROBA-V C1 Top Of Canopy Daily Synthesis 333m

代码:

var dataset = ee.ImageCollection('VITO/PROBAV/C1/S1_TOC_333M')
                  .filter(ee.Filter.date('2018-03-01', '2018-04-01'));
var falseColor = dataset.select(['RED', 'NIR', 'BLUE']);
var falseColorVis = {
  min: 20.0,
  max: 2000.0,
};
Map.setCenter(17.93, 7.71, 2);
Map.addLayer(falseColor, falseColorVis, 'False Color');


相关文章
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2394 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
219 0
|
6月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
552 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
6月前
|
数据可视化 数据挖掘 数据建模
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
6月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
108 0
|
6月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
86 0
|
6月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
132 0
|
6月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
76 0
|
6月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
255 0
|
6月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
120 0

热门文章

最新文章