Google Earth Engine——WWF/HydroSHEDS/03DIR水文信息数据集提供了一套不同尺度的地理参考数据集(矢量和栅格),包括河流网络、流域边界、排水方向和流量积累。

简介: Google Earth Engine——WWF/HydroSHEDS/03DIR水文信息数据集提供了一套不同尺度的地理参考数据集(矢量和栅格),包括河流网络、流域边界、排水方向和流量积累。

HydroSHEDS is a mapping product that provides hydrographic information for regional and global-scale applications in a consistent format. It offers a suite of geo-referenced datasets (vector and raster) at various scales, including river networks, watershed boundaries, drainage directions, and flow accumulations. HydroSHEDS is based on elevation data obtained in 2000 by NASA's Shuttle Radar Topography Mission (SRTM).

 

This drainage direction dataset defines the direction of flow from each cell in the conditioned DEM to its steepest down-slope neighbor. Values of drainage direction vary from 1 to 128. All final outlet cells to the ocean are flagged with a value of 0. All cells that mark the lowest point of an endorheic basin (inland sink) are flagged with a value of -1. The drainage direction values follow the convention adopted by ESRI's flow direction implementation: 1=E, 2=SE, 4=S, 8=SW, 16=W, 32=NW, 64=N, 128=NE.

This dataset is at 3 arc-second resolution. The datasets available at 3 arc-seconds are the Void-Filled DEM, Hydrologically Conditioned DEM, and Drainage (Flow) Direction.

Note that the quality of the HydroSHEDS data is significantly lower for regions above 60 degrees northern latitude as there is no underlying SRTM elevation data available and thus a coarser-resolution DEM was (HYDRO1k provided by USGS).

HydroSHEDS was developed by the World Wildlife Fund (WWF) Conservation Science Program in partnership with the U.S. Geological Survey, the International Centre for Tropical Agriculture, The Nature Conservancy, and the Center for Environmental Systems Research of the University of Kassel, Germany.


HydroSHEDS是一个制图产品,以一致的格式为区域和全球范围的应用提供水文信息。它提供了一套不同尺度的地理参考数据集(矢量和栅格),包括河流网络、流域边界、排水方向和流量积累。HydroSHEDS是基于NASA的航天飞机雷达地形任务(SRTM)在2000年获得的高程数据。

这个排水方向数据集定义了从条件DEM中的每个单元到其最陡峭的下坡邻居的流动方向。排水方向的值从1到128不等。所有通向海洋的最终出口单元都标记为0,所有标志着内流盆地(内陆水槽)最低点的单元都标记为-1。 排水方向值遵循ESRI的流向实施惯例。1=e, 2=se, 4=s, 8=sw, 16=w, 32=nw, 64=n, 128=ne.

该数据集的分辨率为3弧秒。3角秒的数据集是虚空填充DEM、水文条件DEM和排水(流)方向。

请注意,在北纬60度以上的地区,HydroSHEDS数据的质量要低得多,因为没有底层的SRTM高程数据可用,因此要用更粗的分辨率DEM(美国地质调查局提供的HYDRO1k)。

HydroSHEDS是由世界自然基金会(WWF)保护科学项目与美国地质调查局、国际热带农业中心、大自然保护协会和德国卡塞尔大学环境系统研究中心合作开发的。

Dataset Availability

2000-02-11T00:00:00 - 2000-02-22T00:00:00

Dataset Provider

WWF

Collection Snippet

ee.Image("WWF/HydroSHEDS/03DIR")

Resolution

92.77 meters

Bands Table

Name Description Min* Max*
b1 Drainage direction possible values: 1=E, 2=SE, 4=S, 8=SW, 16=W, 32=NW, 64=N, 128=NE; final outlet cells to the ocean are flagged with a value of 0 and cells that mark the lowest point of an endorheic basin (inland sink) are flagged with a value of 255 (original value of -1) 0 255


* = Values are estimated

引用:

Lehner, B., Verdin, K., Jarvis, A. (2008): New global hydrography derived from spaceborne elevation data. Eos, Transactions, AGU, 89(10): 93-94.

代码:

var dataset = ee.Image('WWF/HydroSHEDS/03DIR');
var drainageDirection = dataset.select('b1');
var drainageDirectionVis = {
  min: 1.0,
  max: 128.0,
  palette: [
    '000000', '023858', '006837', '1a9850', '66bd63', 'a6d96a', 'd9ef8b',
    'ffffbf', 'fee08b', 'fdae61', 'f46d43', 'd73027'
  ],
};
Map.setCenter(-121.652, 38.022, 8);
Map.addLayer(drainageDirection, drainageDirectionVis, 'Drainage Direction');


相关文章
|
1月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
353 0
|
23天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
23天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2融合DWRSDWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取方法分解为区域残差化和语义残差化两步,提高了多尺度信息获取的效率。网络设计了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,分别用于高阶段和低阶段,以充分利用不同感受野的特征图。实验结果表明,DWRSeg在Cityscapes和CamVid数据集上表现出色,以每秒319.5帧的速度在NVIDIA GeForce GTX 1080 Ti上达到72.7%的mIoU,超越了现有方法。代码和模型已公开。
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
4月前
|
安全 网络安全 数据安全/隐私保护
人是衡量网络安全的尺度
网络安全尺度是人,人是衡量网络安全的尺度,这一观点体现了网络安全与人的紧密关系,以及人在网络安全中的核心地位。
35 8
|
3月前
|
机器学习/深度学习 安全 网络协议
网络安全公开数据集Maple-IDS,恶意流量检测数据集开放使用!
【8月更文挑战第29天】Maple-IDS 是东北林业大学网络安全实验室发布的网络入侵检测评估数据集,旨在提升异常基础入侵检测和预防系统的性能与可靠性。该数据集包含多种最新攻击类型,如 DDoS 和 N-day 漏洞,覆盖多种服务和网络行为,兼容 CIC-IDS 格式,便于直接使用或生成 csv 文件,适用于多种现代协议。
152 0
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Tensorflow+Keras】keras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例
如何使用TensorFlow和Keras实现条件生成对抗网络(CGAN)并以MNIST和Fashion MNIST数据集为例进行演示。
50 3
|
4月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进 - 特征融合NECK】 GIRAFFEDET之GFPN :广义特征金字塔网络,高效地融合多尺度特征
YOLOv8专栏探讨了目标检测的创新改进,提出了GiraffeDet,一种轻量级主干和深度颈部模块结合的高效检测网络。GiraffeDet使用S2D-chain和GFPN,优化多尺度信息交换,提升检测性能。代码和论文可在相关链接找到。GFPN通过跳跃和跨尺度连接增强信息融合。文章还展示了核心组件如SPPV4、Focus和CSPStage的代码实现。
|
4月前
|
计算机视觉 网络架构
【YOLOv8改进 - 卷积Conv】DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
YOLO目标检测专栏探讨了YOLO的创新改进,如多尺度特征提取的DWRSeg网络。该网络通过区域残差化和语义残差化提升效率,使用DWR和SIR模块优化高层和低层特征。DWRSeg在Cityscapes和CamVid数据集上表现优秀,速度与准确性兼备。论文和代码已公开。核心代码展示了一个包含DWR模块的卷积层。更多配置详情见相关链接。
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2524 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
下一篇
无影云桌面