Google Earth Engine ——MCD43A4 V6天底双向反射分布函数调整反射率(NBAR)这个产品结合了Terra和Aqua航天器的数据,从16天的时间里选择最好的代表像素。

简介: Google Earth Engine ——MCD43A4 V6天底双向反射分布函数调整反射率(NBAR)这个产品结合了Terra和Aqua航天器的数据,从16天的时间里选择最好的代表像素。

The MCD43A4 V6 Nadir Bidirectional Reflectance Distribution Function Adjusted Reflectance (NBAR) product provides 500 meter reflectance data of the MODIS "land" bands 1-7. These are adjusted using a bidirectional reflectance distribution function to model the values as if they were collected from a nadir view. The data are produced daily based on a 16-day retrieval period, with the image's date occurring on the 9th day. This product combines data from both the Terra and Aqua spacecrafts, choosing the best representative pixel from the 16-day period.

Documentation:


MCD43A4 V6天底双向反射分布函数调整反射率(NBAR)产品提供MODIS "陆地 "波段1-7的500米反射率数据。这些数据使用双向反射率分布函数进行调整,以模拟从天底视角收集的数值。这些数据是根据16天的检索期每天产生的,图像的日期发生在第9天。这个产品结合了Terra和Aqua航天器的数据,从16天的时间里选择最好的代表像素。

文件。

用户指南

算法理论基础文件(ATBD)

一般文件

Dataset Availability

2000-02-18T00:00:00 - 2021-09-12T00:00:00

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Collection Snippet

ee.ImageCollection("MODIS/006/MCD43A4")

Resolution

500 meters

Bands Table

Name Description Min Max Wavelength Scale
Nadir_Reflectance_Band1 NBAR at local solar noon for band 1 0 32766 620-670nm 0.0001
Nadir_Reflectance_Band2 NBAR at local solar noon for band 2 0 32766 841-876nm 0.0001
Nadir_Reflectance_Band3 NBAR at local solar noon for band 3 0 32766 459-479nm 0.0001
Nadir_Reflectance_Band4 NBAR at local solar noon for band 4 0 32766 545-565nm 0.0001
Nadir_Reflectance_Band5 NBAR at local solar noon for band 5 0 32766 1230-1250nm 0.0001
Nadir_Reflectance_Band6 NBAR at local solar noon for band 6 0 32766 1628-1652nm 0.0001
Nadir_Reflectance_Band7 NBAR at local solar noon for band 7 0 32766 2105-2155nm 0.0001
BRDF_Albedo_Band_Mandatory_Quality_Band1 BRDF albedo mandatory quality for band 1 0
BRDF_Albedo_Band_Mandatory_Quality_Band1 Bitmask
  • Bit 0: Mandatory QA bit index
    • 0: Processed, good quality (full BRDF inversions)
    • 1: Processed, see other QA (magnitude BRDF inversions)
BRDF_Albedo_Band_Mandatory_Quality_Band2 BRDF albedo mandatory quality for band 2 0
BRDF_Albedo_Band_Mandatory_Quality_Band2 Bitmask
  • Bit 0: Mandatory QA bit index
    • 0: Processed, good quality (full BRDF inversions)
    • 1: Processed, see other QA (magnitude BRDF inversions)
BRDF_Albedo_Band_Mandatory_Quality_Band3 BRDF albedo mandatory quality for band 3 0
BRDF_Albedo_Band_Mandatory_Quality_Band3 Bitmask
  • Bit 0: Mandatory QA bit index
    • 0: Processed, good quality (full BRDF inversions)
    • 1: Processed, see other QA (magnitude BRDF inversions)
BRDF_Albedo_Band_Mandatory_Quality_Band4 BRDF albedo mandatory quality for band 4 0
BRDF_Albedo_Band_Mandatory_Quality_Band4 Bitmask
  • Bit 0: Mandatory QA bit index
    • 0: Processed, good quality (full BRDF inversions)
    • 1: Processed, see other QA (magnitude BRDF inversions)
BRDF_Albedo_Band_Mandatory_Quality_Band5 BRDF albedo mandatory quality for band 5 0
BRDF_Albedo_Band_Mandatory_Quality_Band5 Bitmask
  • Bit 0: Mandatory QA bit index
    • 0: Processed, good quality (full BRDF inversions)
    • 1: Processed, see other QA (magnitude BRDF inversions)
BRDF_Albedo_Band_Mandatory_Quality_Band6 BRDF albedo mandatory quality for band 6 0
BRDF_Albedo_Band_Mandatory_Quality_Band6 Bitmask
  • Bit 0: Mandatory QA bit index
    • 0: Processed, good quality (full BRDF inversions)
    • 1: Processed, see other QA (magnitude BRDF inversions)
BRDF_Albedo_Band_Mandatory_Quality_Band7 BRDF albedo mandatory quality for band 7 0
BRDF_Albedo_Band_Mandatory_Quality_Band7 Bitmask
  • Bit 0: Mandatory QA bit index
    • 0: Processed, good quality (full BRDF inversions)
    • 1: Processed, see other QA (magnitude BRDF inversions)

使用说明:

MODIS data and products acquired through the LP DAAC have no restrictions on subsequent use, sale, or redistribution.

通过LP DAAC获得的MODIS数据和产品对后续使用、销售或再分配没有限制。

引用:


代码:

var dataset = ee.ImageCollection('MODIS/006/MCD43A4')
                  .filter(ee.Filter.date('2018-04-01', '2018-06-01'));
var trueColor = dataset.select([
  'Nadir_Reflectance_Band1', 'Nadir_Reflectance_Band4',
  'Nadir_Reflectance_Band3'
]);
var trueColorVis = {
  min: 0.0,
  max: 4000.0,
  gamma: 1.4,
};
Map.setCenter(-7.03125, 31.0529339857, 2);
Map.addLayer(trueColor, trueColorVis, 'True Color');



相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2631 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
96 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
159 0
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
241 0
|
7月前
|
数据可视化 数据挖掘 数据建模
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
7月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
120 0
|
7月前
|
数据采集 编解码 人工智能
Google Earth Engine(GEE)——全球每日近地表空气温度(2003-2020年)
Google Earth Engine(GEE)——全球每日近地表空气温度(2003-2020年)
233 0
|
7月前
|
人工智能
Google Earth Engine(GEE)——1984-2019年美国所有土地上的大火烧伤严重程度和范围数据集
Google Earth Engine(GEE)——1984-2019年美国所有土地上的大火烧伤严重程度和范围数据集
74 0
|
7月前
Google Earth Engine(GEE)——当你无法进行两个图像相减的时候发生错误lst2020.subtract is not a function
Google Earth Engine(GEE)——当你无法进行两个图像相减的时候发生错误lst2020.subtract is not a function
81 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
81 0

热门文章

最新文章