Google Earth Engine ——LANDSAT/LT04/C02/T1系列数据介绍!

简介: Google Earth Engine ——LANDSAT/LT04/C02/T1系列数据介绍!

This dataset contains atmospherically corrected surface reflectance and land surface temperature derived from the data produced by the Landsat TM sensor. These images contain 4 visible and near-infrared (VNIR) bands and 2 short-wave infrared (SWIR) bands processed to orthorectified surface reflectance, and one thermal infrared (TIR) band processed to orthorectified surface temperature. They also contain intermediate bands used in calculation of the ST products, as well as QA bands.


Landsat 4 and 5 SR products are created with the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm (version 3.4.0). All Collection 2 ST products are created with a single-channel algorithm jointly created by the Rochester Institute of Technology (RIT) and National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL).

Strips of collected data are packaged into overlapping "scenes" covering approximately 170km x 183km using a standardized reference grid.

Some assets have only SR data, in which case ST bands are present but empty. For assets with both ST and SR bands, 'L1_PROCESSING_LEVEL' is set to 'L2SP'. For assets with only SR bands, 'L1_PROCESSING_LEVEL' is set to 'L2SR'.

Additional documentation and usage examples.

Data provider notes:

  • Data products must contain both optical and thermal data to be successfully processed to surface temperature, as ASTER NDVI is required to temporally adjust the ASTER GED product to the target Landsat scene. Therefore, night time acquisitions cannot be processed to surface temperature.
  • A known error exists in the surface temperature retrievals relative to clouds and possibly cloud shadows. The characterization of these issues has been documented by Cook et al., (2014).


该数据集包含从Landsat TM传感器产生的数据中提取的大气校正表面反射率和地表温度。这些图像包含4个可见光和近红外(VNIR)波段和2个短波红外(SWIR)波段,被处理成正射的表面反射率,以及一个热红外(TIR)波段,被处理成正射的表面温度。它们还包含用于计算ST产品的中间波段,以及QA波段。

Landsat 4和5的SR产品是用Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)算法(3.4.0版)制作的。所有的2号卫星产品都是用罗切斯特理工学院(RIT)和美国国家航空航天局(NASA)喷气推进实验室(JPL)联合创建的单通道算法创建的。

收集的数据条被打包成重叠的 "场景",使用标准化的参考网格,覆盖大约170公里x183公里。

一些资产只有SR数据,在这种情况下,ST波段是存在的,但却是空的。对于既有ST波段又有SR波段的资产,"L1_PROCESSING_LEVEL "被设置为 "L2SP"。对于只有SR带的资产,'L1_PROCESSING_LEVEL'被设置为'L2SR'。

其他文件和使用例子。

数据提供者说明。

数据产品必须包含光学和热数据,才能成功处理成表面温度,因为ASTER NDVI需要在时间上调整ASTER GED产品与目标Landsat场景。因此,夜间采集的数据不能被处理成地表温度。

在相对于云和可能的云影的表面温度检索中存在一个已知的错误。库克等人(2014)已经记录了这些问题的特征。

Dataset Availability

1982-08-22T00:00:00 - 1993-12-14T00:00:00

Dataset Provider

USGS

Collection Snippet

Copied

ee.ImageCollection("LANDSAT/LT04/C02/T1_L2")

Resolution

30 meters

Bands Table

Name Description Min Max Units Wavelength Scale Offset
SR_B1 Band 1 (blue) surface reflectance 1 65455 0.45-0.52 μm 0.0000275 -0.2
SR_B2 Band 2 (green) surface reflectance 1 65455 0.52-0.60 μm 0.0000275 -0.2
SR_B3 Band 3 (red) surface reflectance 1 65455 0.63-0.69 μm 0.0000275 -0.2
SR_B4 Band 4 (near infrared) surface reflectance 1 65455 0.77-0.90 μm 0.0000275 -0.2
SR_B5 Band 5 (shortwave infrared 1) surface reflectance 1 65455 1.55-1.75 μm 0.0000275 -0.2
SR_B7 Band 7 (shortwave infrared 2) surface reflectance 1 65455 2.08-2.35 μm 0.0000275 -0.2
ST_B6 Band 6 surface temperature. 0 65535 Kelvin 10.40-12.50 μm 0.00341802 149
SR_ATMOS_OPACITY A general interpretation of atmospheric opacity generated by LEDAPS and based on the radiance viewed over Dark Dense Vegetation (DDV) within the scene. A general interpretation of atmospheric opacity is that values (after scaling by 0.001 is applied) less than 0.1 are clear, 0.1-0.3 are average, and values greater than 0.3 indicate haze or other cloud situations. SR values from pixels with high atmospheric opacity will be less reliable, especially under high solar zenith angle conditions. The SR_ATMOS_OPACITY band is provided for advanced users and for product quality assessment and has not been validated. Most users are advised to instead use the QA_PIXEL band information for cloud discrimination. 0 10000 0.001 0
SR_CLOUD_QA Cloud Quality Assessment 0 0
SR_CLOUD_QA Bitmask
  • Bit 0: Dark Dense Vegetation (DDV)
  • Bit 1: Cloud
  • Bit 2: Cloud Shadow
  • Bit 3: Adjacent to Cloud
  • Bit 4: Snow
  • Bit 5: Water
ST_ATRAN Atmospheric Transmittance. 0 10000 0.0001 0
ST_CDIST Pixel distance to cloud. 0 24000 km 0.01 0
ST_DRAD Downwelled Radiance. 0 28000 W/(m^2*sr*um)/ DN 0.001 0
ST_EMIS Emissivity estimated from ASTER GED. 0 10000 0.0001 0
ST_EMSD Emissivity standard deviation. 0 10000 0.0001 0
ST_QA Uncertainty of the Surface Temperature band. 0 32767 K 0.01 0
ST_TRAD Thermal band converted to radiance. 0 22000 W/(m^2*sr*um)/ DN 0.001 0
ST_URAD Upwelled Radiance. 0 28000 W/(m^2*sr*um)/ DN 0.001 0
QA_PIXEL Pixel quality attributes generated from the CFMASK algorithm. 0 0
QA_PIXEL Bitmask
  • Bit 0: Fill
  • Bit 1: Dilated Cloud
  • Bit 2: Unused
  • Bit 3: Cloud
  • Bit 4: Cloud Shadow
  • Bit 5: Snow
  • Bit 6: Clear
    • 0: Cloud or Dilated Cloud bits are set
    • 1: Cloud and Dilated Cloud bits are not set
  • Bit 7: Water
  • Bits 8-9: Cloud Confidence
    • 0: None
    • 1: Low
    • 2: Medium
    • 3: High
  • Bits 10-11: Cloud Shadow Confidence
    • 0: None
    • 1: Low
    • 2: Medium
    • 3: High
  • Bits 12-13: Snow/Ice Confidence
    • 0: None
    • 1: Low
    • 2: Medium
    • 3: High
  • Bits 14-15: Cirrus Confidence
    • 0: None
    • 1: Low
    • 2: Medium
    • 3: High
QA_RADSAT Radiometric saturation QA 0 0
QA_RADSAT Bitmask
  • Bit 0: Band 1 data saturated
  • Bit 1: Band 2 data saturated
  • Bit 2: Band 3 data saturated
  • Bit 3: Band 4 data saturated
  • Bit 4: Band 5 data saturated
  • Bit 5: Band 6L data saturated
  • Bit 6: Band 7 data saturated
  • Bit 7: Unused
  • Bit 8: Band 6H data saturated
  • Bit 9: Dropped pixel
    • 0: Pixel present
    • 1: Detector doesn't have a value

影像属性:

Name Type Description
ALGORITHM_SOURCE_SURFACE_REFLECTANCE String Name and version of the surface reflectance algorithm.
ALGORITHM_SOURCE_SURFACE_TEMPERATURE String Name and version of the surface temperature algorithm.
CLOUD_COVER Double Percentage cloud cover (0-100), -1 = not calculated.
CLOUD_COVER_LAND Double Percentage cloud cover over land (0-100), -1 = not calculated.
COLLECTION_CATEGORY String Scene collection category, "T1" or "T2".
DATA_SOURCE_AIR_TEMPERATURE String Air temperature data source.
DATA_SOURCE_ELEVATION String Elevation data source.
DATA_SOURCE_OZONE String Ozone data source.
DATA_SOURCE_PRESSURE String Pressure data source.
DATA_SOURCE_REANALYSIS String Reanalysis data source.
DATA_SOURCE_WATER_VAPOR String Water vapor data source.
DATE_PRODUCT_GENERATED Double Timestamp of the date when the product was generated.
EARTH_SUN_DISTANCE Double Earth-Sun distance (AU).
EPHEMERIS_TYPE Identifier to inform the user of the orbital ephemeris type used: "DEFINITIVE" or "PREDICTIVE". If the field is not present, the user should assume "PREDICTIVE".
GEOMETRIC_RMSE_MODEL Double Combined RMSE (Root Mean Square Error) of the geometric residuals (meters) in both across-track and along-track directions.
GEOMETRIC_RMSE_MODEL_X Double RMSE (Root Mean Square Error) of the geometric residuals (meters) measured on the GCPs (Ground Control Points) used in geometric precision correction in the across-track direction.
GEOMETRIC_RMSE_MODEL_Y Double RMSE (Root Mean Square Error) of the geometric residuals (meters) measured on the GCPs (Ground Control Points) used in geometric precision correction in the along-track direction.
GROUND_CONTROL_POINTS_MODEL Double Number of GCPs used in the precision correction process. This parameter is only present if the PROCESSING_LEVEL is L1TP.
GROUND_CONTROL_POINTS_VERSION Double GCP dataset version used in the precision correction process. This parameter is only present if the PROCESSING_LEVEL is L1TP.
IMAGE_QUALITY Int Composite image quality for the bands. 0 = worst, 9 = best, -1 = quality not calculated or assessed.
L1_DATE_PRODUCT_GENERATED String Product generation date for the corresponding L1 product.
L1_LANDSAT_PRODUCT_ID String Landsat Product Identifier for the corresponding L1 product.
L1_PROCESSING_LEVEL String Processing Level for the corresponding L1 product.
L1_PROCESSING_SOFTWARE_VERSION String Processing software version for the corresponding L1 product.
LANDSAT_PRODUCT_ID String Landsat Product Identifier
LANDSAT_SCENE_ID String Short Landsat Scene Identifier
PROCESSING_LEVEL String "L2SP" when both SR and LST bands are present, or "L2SR" when only SR bands are present.
PROCESSING_SOFTWARE_VERSION String The processing software version that created the product.
SCENE_CENTER_TIME String Time of the observations as in ISO 8601 string.
SENSOR_ID String Name of the sensor.
SPACECRAFT_ID String Name of the spacecraft.
SUN_AZIMUTH Double Sun azimuth angle in degrees for the image center location at the image center acquisition time. A positive value indicates angles to the east or clockwise from the north. A negative value indicates angles to the west or counterclockwise from the north.
SUN_ELEVATION Double Sun elevation angle in degrees for the image center location at the image center acquisition time. A positive value indicates a daytime scene. A negative value indicates a nighttime scene. Note: For reflectance calculation, the sun zenith angle is needed, which is 90 - sun elevation angle.
TEMPERATURE_MAXIMUM_BAND_ST_B6 Double Maximum achievable temperature value for Band 6.
TEMPERATURE_MINIMUM_BAND_ST_B6 Double Minimum achievable temperature value for Band 6.
WRS_PATH Int WRS path number of scene.
WRS_ROW Int WRS row number of scene.


使用说明:

Landsat datasets are federally created data and therefore reside in the public domain and may be used, transferred, or reproduced without copyright restriction.

Acknowledgement or credit of the USGS as data source should be provided by including a line of text citation such as the example shown below.

(Product, Image, Photograph, or Dataset Name) courtesy of the U.S. Geological Survey

Example: Landsat-7 image courtesy of the U.S. Geological Survey

See the USGS Visual Identity System Guidance for further details on proper citation and acknowledgement of USGS products.


Landsat数据集是联邦创建的数据,因此属于公共领域,可以在没有版权限制的情况下使用、转让或复制。

对美国地质调查局作为数据来源的鸣谢或信用,应包括一行文字的引用,如下面的例子。

(产品、图像、照片或数据集名称)由美国地质调查局提供。

例子。Landsat-7图像由美国地质调查局提供

请参阅美国地质调查局视觉识别系统指南,了解有关美国地质调查局产品的正确引用和鸣谢的进一步细节。

代码:

var dataset = ee.ImageCollection('LANDSAT/LT04/C01/T1_TOA')
                  .filterDate('1989-01-01', '1992-12-31');
var trueColor321 = dataset.select(['B3', 'B2', 'B1']);
var trueColor321Vis = {
  min: 0.0,
  max: 0.4,
  gamma: 1.2,
};
Map.setCenter(6.746, 46.529, 6);
Map.addLayer(trueColor321, trueColor321Vis, 'True Color (321)');



相关文章
|
8月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2825 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
8月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
270 0
|
8月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
732 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
8月前
|
数据可视化 数据挖掘 数据建模
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
8月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
115 0
|
8月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
175 0
|
8月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
94 0
|
8月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
329 0
|
8月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
156 0
|
8月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
150 0

热门文章

最新文章