Google Earth Engine ——数据全解析专辑(COPERNICUS/S1_GRD)20154至今哨兵-1号合成孔径雷达 (SAR) 数据集

简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/S1_GRD)20154至今哨兵-1号合成孔径雷达 (SAR) 数据集

The Sentinel-1 mission provides data from a dual-polarization C-band Synthetic Aperture Radar (SAR) instrument at 5.405GHz (C band). This collection includes the S1 Ground Range Detected (GRD) scenes, processed using the Sentinel-1 Toolbox to generate a calibrated, ortho-corrected product. The collection is updated daily. New assets are ingested within two days after they become available.


This collection contains all of the GRD scenes. Each scene has one of 3 resolutions (10, 25 or 40 meters), 4 band combinations (corresponding to scene polarization) and 3 instrument modes. Use of the collection in a mosaic context will likely require filtering down to a homogeneous set of bands and parameters. See this article for details of collection use and preprocessing. Each scene contains either 1 or 2 out of 4 possible polarization bands, depending on the instrument's polarization settings. The possible combinations are single band VV or HH, and dual band VV+VH and HH+HV:

  1. VV: single co-polarization, vertical transmit/vertical receive
  2. HH: single co-polarization, horizontal transmit/horizontal receive
  3. VV + VH: dual-band cross-polarization, vertical transmit/horizontal receive
  4. HH + HV: dual-band cross-polarization, horizontal transmit/vertical receive


Each scene also includes an additional 'angle' band that contains the approximate incidence angle from ellipsoid in degrees at every point. This band is generated by interpolating the 'incidenceAngle' property of the 'geolocationGridPoint' gridded field provided with each asset.

Each scene was pre-processed with Sentinel-1 Toolbox using the following steps:

  1. Thermal noise removal
  2. Radiometric calibration
  3. Terrain correction using SRTM 30 or ASTER DEM for areas greater than 60 degrees latitude, where SRTM is not available. The final terrain-corrected values are converted to decibels via log scaling (10*log10(x)).


For more information about these pre-processing steps, please refer to the Sentinel-1 Pre-processing article. For further advice on working with Sentinel-1 imagery, see Guido Lemoine's tutorial on SAR basics and Mort Canty's tutorial on SAR change detection.


This collection is computed on-the-fly. If you want to use the underlying collection with raw power values (which is updated faster), see COPERNICUS/S1_GRD_FLOAT.


Sentinel-1 任务提供来自双极化 C 波段合成孔径雷达 (SAR) 仪器的数据,频率为 5.405GHz(C 波段)。该集合包括 S1 地面范围检测 (GRD) 场景,使用 Sentinel-1 工具箱处理以生成校准的正射校正产品。该系列每天更新。新资产在可用后的两天内被摄取。


此集合包含所有 GRD 场景。每个场景具有 3 种分辨率(10、25 或 40 米)、4 种波段组合(对应于场景极化)和 3 种仪器模式之一。在镶嵌上下文中使用集合可能需要过滤到一组同质的波段和参数。有关集合使用和预处理的详细信息,请参阅本文。每个场景包含 4 个可能的极化波段中的 1 个或 2 个,具体取决于仪器的极化设置。可能的组合是单频段 VV 或 HH,以及双频段 VV+VH 和 HH+HV:

VV:单共极化,垂直发射/垂直接收

HH:单共极化,水平发射/水平接收

VV + VH:双频交叉极化,垂直发射/水平接收

HH + HV:双频交叉极化,水平发射/垂直接收

每个场景还包括一个附加的“角度”带,其中包含从椭球每个点的近似入射角(以度为单位)。该波段是通过插入每个资产提供的“geolocationGridPoint”网格字段的“incidenceAngle”属性来生成的。

每个场景都使用 Sentinel-1 Toolbox 进行预处理,步骤如下:

热噪声去除

辐射校准

使用 SRTM 30 或 ASTER DEM 对纬度大于 60 度的区域进行地形校正,其中 SRTM 不可用。最终的地形校正值通过对数缩放 (10*log10(x)) 转换为分贝。

有关这些预处理步骤的更多信息,请参阅 Sentinel-1 预处理文章。有关使用 Sentinel-1 影像的进一步建议,请参阅 Guido Lemoine 的 SAR 基础教程和 Mort Canty 的 SAR 变化检测教程。

该集合是即时计算的。如果要使用具有原始功率值(更新速度更快)的基础集合,请参阅 COPERNICUS/S1_GRD_FLOAT。

Dataset Availability

2014-10-03T00:00:00 - 2021-09-04T00:00:00

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S1_GRD")

Bands Table

Name Description Min* Max* Resolution Units
HH Single co-polarization, horizontal transmit/horizontal receive -50 1 10 meters
HV Dual-band cross-polarization, horizontal transmit/vertical receive -50 1 10 meters
VV Single co-polarization, vertical transmit/vertical receive -50 1 10 meters
VH Dual-band cross-polarization, vertical transmit/horizontal receive -50 1 10 meters
angle Approximate incidence angle from ellipsoid 0 90 -1 meters Degrees

* = Values are estimated


影像属性:

Name Type Description
GRD_Post_Processing_facility_country String Name of the country where the facility is located. This element is configurable within the IPF.
GRD_Post_Processing_facility_name String Name of the facility where the processing step was performed. This element is configurable within the IPF.
GRD_Post_Processing_facility_organisation String Name of the organisation responsible for the facility. This element is configurable within the IPF.
GRD_Post_Processing_facility_site String Geographical location of the facility. This element is configurable within the IPF.
GRD_Post_Processing_software_name String Name of the software.
GRD_Post_Processing_software_version String Software version identification.
GRD_Post_Processing_start Double Processing start time.
GRD_Post_Processing_stop Double Processing stop time.
SLC_Processing_facility_country String Name of the country where the facility is located. This element is configurable within the IPF.
SLC_Processing_facility_name String Name of the facility where the processing step was performed. This element is configurable within the IPF.
SLC_Processing_facility_organisation String Name of the organisation responsible for the facility. This element is configurable within the IPF.
SLC_Processing_facility_site String Geographical location of the facility. This element is configurable within the IPF.
SLC_Processing_software_name String Name of the software.
SLC_Processing_software_version String Software version identification.
SLC_Processing_start Double Processing start time.
SLC_Processing_stop Double Processing stop time.
S1TBX_Calibration_Operator_version String Sentinel-1 Toolbox calibration tool version.
S1TBX_SAR_Processing_version String Sentinel-1 Toolbox SAR processing tool version.
SNAP_Graph_Processing_Framework_GPF_version String Sentinel Application Platform (SNAP) version.
startTimeANX Double Sensing start time of the input data relative to the ascending node crossing. This is a count of the time elapsed since the orbit ascending node crossing [ms].
stopTimeANX Double Sensing stop time of the input data relative to the ascending node crossing. This is a count of the time elapsed since the orbit ascending node crossing [ms].
nssdcIdentifier String Uniquely identifies the mission according to standards defined by the World Data Center for Satellite Information (WDC-SI), available [here](https://nssdc.gsfc.nasa.gov/nmc/SpacecraftQuery.jsp).
familyName String The full mission name. E.g. “SENTINEL-1”
platform_number String The alphanumeric identifier of the platform within the mission.
instrument String Information related to the instrument on the platform to which acquired the data.
instrumentMode String IW ([Interferometric Wide Swath](https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/interferometric-wide-swath)), EW ([Extra Wide Swath](https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/extra-wide-swath)) or SM ([Strip Map](https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/stripmap))
instrumentSwath String List of the swaths contained within a product. Most products will contain only one swath, except for TOPS SLC products which include 3 or 5 swaths.
orbitNumber_start Double Absolute orbit number of the oldest line within the image data.
orbitNumber_stop Double Absolute orbit number of the most recent line within the image data.
relativeOrbitNumber_start Double Relative orbit number of the oldest line within the image data.
relativeOrbitNumber_stop Double Relative orbit number of the most recent line within the image data.
cycleNumber Double Absolute sequence number of the mission cycle to which the oldest image data applies.
phaseIdentifier Double Id of the mission phase to which the oldest image data applies.
orbitProperties_pass String Direction of the orbit ('ASCENDING' or 'DESCENDING') for the oldest image data in the product (the start of the product).
orbitProperties_ascendingNodeTime Double UTC time of the ascending node of the orbit. This element is present for all products except ASAR L2 OCN products which are generated from an ASAR L1 input.
resolution String H for high or M for medium.
resolution_meters Double Resolution in meters.
instrumentConfigurationID Double The instrument configuration ID (Radar database ID) for this data.
missionDataTakeID Double Unique ID of the datatake within the mission.
transmitterReceiverPolarisation Double Transmit/Receive polarisation for the data. There is one element for each Tx/Rx combination: ['VV'], ['HH'], ['VV', 'VH'], or ['HH', 'HV'].
productClass String Output product class “A” for Annotation or “S” for Standard.
productClassDescription String Textual description of the output product class.
productComposition String The composition type of this product: “Individual”, “Slice” or “Assembled”.
productType String The product type (correction level) of this product.
productTimelinessCategory String Describes the required timeliness of the processing. One of: NRT-10m, NRT-1h, NRT-3h, Fast-24h, Off-line, or Reprocessing
sliceProductFlag String True if this is a slice from a larger product or false if this is a complete product.
segmentStartTime Double Sensing start time of the segment to which this slice belongs. This field is only present if sliceProductFlag = true.
sliceNumber Double Absolute slice number of this slice starting at 1. This field is only present if sliceProductFlag = true.
totalSlices Double Total number of slices in the complete data take. This field is only present if sliceProductFlag = true.


代码:

var imgVV = ee.ImageCollection('COPERNICUS/S1_GRD')
        .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))
        .filter(ee.Filter.eq('instrumentMode', 'IW'))
        .select('VV')
        .map(function(image) {
          var edge = image.lt(-30.0);
          var maskedImage = image.mask().and(edge.not());
          return image.updateMask(maskedImage);
        });
var desc = imgVV.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING'));
var asc = imgVV.filter(ee.Filter.eq('orbitProperties_pass', 'ASCENDING'));
var spring = ee.Filter.date('2015-03-01', '2015-04-20');
var lateSpring = ee.Filter.date('2015-04-21', '2015-06-10');
var summer = ee.Filter.date('2015-06-11', '2015-08-31');
var descChange = ee.Image.cat(
        desc.filter(spring).mean(),
        desc.filter(lateSpring).mean(),
        desc.filter(summer).mean());
var ascChange = ee.Image.cat(
        asc.filter(spring).mean(),
        asc.filter(lateSpring).mean(),
        asc.filter(summer).mean());
Map.setCenter(5.2013, 47.3277, 12);
Map.addLayer(ascChange, {min: -25, max: 5}, 'Multi-T Mean ASC', true);
Map.addLayer(descChange, {min: -25, max: 5}, 'Multi-T Mean DESC', true);


影像



相关文章
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
4549 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
523 0
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
1101 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
数据可视化 数据挖掘 数据建模
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
11月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
282 2
|
7月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
683 29
|
7月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
201 4
|
7月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
7月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。
|
7月前
|
存储 前端开发 JavaScript
在线教育网课系统源码开发指南:功能设计与技术实现深度解析
在线教育网课系统是近年来发展迅猛的教育形式的核心载体,具备用户管理、课程管理、教学互动、学习评估等功能。本文从功能和技术两方面解析其源码开发,涵盖前端(HTML5、CSS3、JavaScript等)、后端(Java、Python等)、流媒体及云计算技术,并强调安全性、稳定性和用户体验的重要性。

热门文章

最新文章

推荐镜像

更多
  • DNS
  • 下一篇
    oss教程