Google Earth Engine ——GCOM-C 进行长期和持续的全球叶面积指数数据集(JAXA/GCOM-C/L3/LAND/LAI/V1)

简介: Google Earth Engine ——GCOM-C 进行长期和持续的全球叶面积指数数据集(JAXA/GCOM-C/L3/LAND/LAI/V1)

This product is the sum of the one-sided green leaf area per unit ground area.

A newer version JAXA/GCOM-C/L3/LAND/LAI/V2 is also available for this dataset which uses this algorithm for processing.


GCOM-C conducts long-term and continuous global observation and data collection to elucidate the mechanism behind fluctuations in radiation budget and carbon cycle needed to make accurate projections regarding future temperature rise. At the same time, cooperating with research institutions having a climate numerical model, it contributes to reduction of errors in temperature rise prediction derived from the climate numerical model and improvement of accuracy of prediction of various environmental changes. SGLI mounted on GCOM-C is the succession sensor of the Global Imager (GLI) mounted on ADEOS-II (MIDORI II) and is the Imaging Radiometer which measures the radiation from near-ultraviolet to thermal infrared region (380 nm-12 um) in 19 channels. Global observation of once for approximately every two days is possible at mid-latitude near Japan by observation width at ground greater than 1,000 km. In addition, SGLI realizes high resolution than the similar global sensor and has a polarized observation function and a multi-angle observation function.

此乘积为单位地面面积的单面绿叶面积之和。


更新版本的 JAXA/GCOM-C/L3/LAND/LAI/V2 也可用于此数据集,该数据集使用此算法进行处理。


GCOM-C 进行长期和持续的全球观测和数据收集,以阐明辐射收支和碳循环波动背后的机制,从而对未来温度上升做出准确预测。同时,与有气候数值模型的研究机构合作,有助于减少气候数值模型得出的温升预测误差,提高各种环境变化的预测精度。安装在 GCOM-C 上的 SGLI 是安装在 ADEOS-II (MIDORI II) 上的 Global Imager (GLI) 的连续传感器,是测量从近紫外到热红外区域 (380 nm-12 um) 的辐射的成像辐射计在 19 个频道中。在日本附近的中纬度地区,地面观测宽度超过 1,000 公里,可以进行大约每两天一次的全球观测。此外,SGLI 实现了比同类全局传感器更高的分辨率,并具有偏振观测功能和多角度观测功能。

Dataset Availability

2018-01-01T00:00:00 - 2020-06-28T00:00:00

Dataset Provider

Global Change Observation Mission (GCOM)

Collection Snippet

ee.ImageCollection("JAXA/GCOM-C/L3/LAND/LAI/V1")

Resolution

2.5 arc minutes

Bands Table

Name Description Min* Max* Units
LAI_AVE The sum of the one-sided green leaf area per unit ground area. 0 65531 none
LAI_QA_flag LAI QA
LAI_QA_flag Bitmask
  • Bits 0-1: Terrain type
    • 0: water (land fraction = 0%)
    • 1: mostly water (0% < land fraction < 50%)
    • 2: mostly coastal (50% < land fraction < 100%)
    • 3: land (land fraction = 100%)

* = Values are estimated

影像属性:

Name Type Description
ALGORITHM_VERSION String Algorithm version
GRID_INTERVAL String Spatial resolution
GRID_INTERVAL_UNIT String Unit of GRID_INTERVAL
IMAGE_END_TIME String Image acquisition end time
IMAGE_START_TIME String Image acquisition start time
PROCESSING_RESULT String Good, Fair, Poor, NG
PROCESSING_UT String Processing time
PRODUCT_FILENAME String Source filename
PRODUCT_VERSION String Product version
SATELLITE_DIRECTION String Satellite orbit direction
LAI_AVE_OFFSET String Offset
LAI_AVE_SLOPE String Slope


数据说明:

This dataset is free to use without any restrictions (including commercial use). Anyone wishing to publish analyzed results or value added data products should properly credit the original G-Portal data, e.g., "PR data by Japan Aerospace Exploration Agency". For value added data products, please indicate the credit of the original G-Portal data, e.g., "Original data for this value added data product was provided by Japan Aerospace Exploration Agency."

See G-Portal's terms of service (Article 7) for additional information.

引用:

Ono, Y. (Nov. 2011). GCOM-C1 / SGLI LAI Product Algorithm Theoretical Basis Document (Version 1). Retrieved from https://suzaku.eorc.jaxa.jp/GCOM_C/data/ATBD/ver1/Ono_Y_ATBD.pdf


代码:

var dataset = ee.ImageCollection("JAXA/GCOM-C/L3/LAND/LAI/V1")
                .filterDate('2020-01-01', '2020-02-01');
// Multiply with slope coefficient
var dataset = dataset.mean().multiply(0.001).log10();
var visualization = {
  bands: ['LAI_AVE'],
  min: -3.0,
  max: 1.66,
  palette: [
    "040274","040281","0502a3","0502b8","0502ce","0502e6",
    "0602ff","235cb1","307ef3","269db1","30c8e2","32d3ef",
    "3be285","3ff38f","86e26f","3ae237","b5e22e","d6e21f",
    "fff705","ffd611","ffb613","ff8b13","ff6e08","ff500d",
    "ff0000","de0101","c21301","a71001","911003",
  ]
};
Map.setCenter(128.45, 33.33, 5);
Map.addLayer(dataset, visualization, "Leaf Area Index");


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2690 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
251 0
|
7月前
GEE——Google dynamic world中在影像导出过程中无法完全导出较大面积影像的解决方案(投影的转换)EPSG:32630和EPSG:4326的区别
GEE——Google dynamic world中在影像导出过程中无法完全导出较大面积影像的解决方案(投影的转换)EPSG:32630和EPSG:4326的区别
141 0
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
661 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
数据可视化 数据挖掘 数据建模
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
101 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
165 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
88 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
291 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
148 0