怎么break java8 stream的foreach

简介: 怎么break java8 stream的foreach

目录



怎么break java8 stream的foreach


简介


我们通常需要在java stream中遍历处理里面的数据,其中foreach是最最常用的方法。


但是有时候我们并不想处理完所有的数据,或者有时候Stream可能非常的长,或者根本就是无限的。


一种方法是先filter出我们需要处理的数据,然后再foreach遍历。


那么我们如何直接break这个stream呢?今天本文重点讲解一下这个问题。


使用Spliterator


上篇文章我们在讲Spliterator的时候提到了,在tryAdvance方法中,如果返回false,则Spliterator将会停止处理后续的元素。


通过这个思路,我们可以创建自定义Spliterator。


假如我们有这样一个stream:


Stream<Integer> ints = Stream.of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);


我们想定义一个操作,当x > 5的时候就停止。


我们定义一个通用的Spliterator:


public class CustomSpliterator<T> extends Spliterators.AbstractSpliterator<T>  {
    private Spliterator<T> splitr;
    private Predicate<T> predicate;
    private volatile boolean isMatched = true;
    public CustomSpliterator(Spliterator<T> splitr, Predicate<T> predicate) {
        super(splitr.estimateSize(), 0);
        this.splitr = splitr;
        this.predicate = predicate;
    }
    @Override
    public synchronized boolean tryAdvance(Consumer<? super T> consumer) {
        boolean hadNext = splitr.tryAdvance(elem -> {
            if (predicate.test(elem) && isMatched) {
                consumer.accept(elem);
            } else {
                isMatched = false;
            }
        });
        return hadNext && isMatched;
    }
}


在上面的类中,predicate是我们将要传入的判断条件,我们重写了tryAdvance,通过将predicate.test(elem)加入判断条件,从而当条件不满足的时候返回false.


看下怎么使用:


@Slf4j
public class CustomSpliteratorUsage {
    public static <T> Stream<T> takeWhile(Stream<T> stream, Predicate<T> predicate) {
        CustomSpliterator<T> customSpliterator = new CustomSpliterator<>(stream.spliterator(), predicate);
        return StreamSupport.stream(customSpliterator, false);
    }
    public static void main(String[] args) {
        Stream<Integer> ints = Stream.of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        List<Integer> result =
          takeWhile(ints, x -> x < 5 )
                        .collect(Collectors.toList());
        log.info(result.toString());
    }
}


我们定义了一个takeWhile方法,接收Stream和predicate条件。


只有当predicate条件满足的时候才会继续,我们看下输出的结果:


[main] INFO com.flydean.CustomSpliteratorUsage - [1, 2, 3, 4]


自定义forEach方法


除了使用Spliterator,我们还可以自定义forEach方法来使用自己的遍历逻辑:


public class CustomForEach {
    public static class Breaker {
        private volatile boolean shouldBreak = false;
        public void stop() {
            shouldBreak = true;
        }
        boolean get() {
            return shouldBreak;
        }
    }
    public static <T> void forEach(Stream<T> stream, BiConsumer<T, Breaker> consumer) {
        Spliterator<T> spliterator = stream.spliterator();
        boolean hadNext = true;
        Breaker breaker = new Breaker();
        while (hadNext && !breaker.get()) {
            hadNext = spliterator.tryAdvance(elem -> {
                consumer.accept(elem, breaker);
            });
        }
    }
}


上面的例子中,我们在forEach中引入了一个外部变量,通过判断这个外部变量来决定是否进入spliterator.tryAdvance方法。


看下怎么使用:


@Slf4j
public class CustomForEachUsage {
    public static void main(String[] args) {
        Stream<Integer> ints = Stream.of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        List<Integer> result = new ArrayList<>();
        CustomForEach.forEach(ints, (elem, breaker) -> {
            if (elem >= 5 ) {
                breaker.stop();
            } else {
                result.add(elem);
            }
        });
        log.info(result.toString());
    }
}


上面我们用新的forEach方法,并通过判断条件来重置判断flag,从而达到break stream的目的。


总结


本文通过两个具体的例子讲解了如何break一个stream,希望大家能够喜欢。


本文的例子https://github.com/ddean2009/learn-java-streams/tree/master/break-stream-foreach

相关文章
|
5月前
|
安全 Java API
告别繁琐编码,拥抱Java 8新特性:Stream API与Optional类助你高效编程,成就卓越开发者!
【8月更文挑战第29天】Java 8为开发者引入了多项新特性,其中Stream API和Optional类尤其值得关注。Stream API对集合操作进行了高级抽象,支持声明式的数据处理,避免了显式循环代码的编写;而Optional类则作为非空值的容器,有效减少了空指针异常的风险。通过几个实战示例,我们展示了如何利用Stream API进行过滤与转换操作,以及如何借助Optional类安全地处理可能为null的数据,从而使代码更加简洁和健壮。
138 0
|
1月前
|
存储 Java 数据挖掘
Java 8 新特性之 Stream API:函数式编程风格的数据处理范式
Java 8 引入的 Stream API 提供了一种新的数据处理方式,支持函数式编程风格,能够高效、简洁地处理集合数据,实现过滤、映射、聚合等操作。
57 6
|
1月前
|
Java API 开发者
Java中的Lambda表达式与Stream API的协同作用
在本文中,我们将探讨Java 8引入的Lambda表达式和Stream API如何改变我们处理集合和数组的方式。Lambda表达式提供了一种简洁的方法来表达代码块,而Stream API则允许我们对数据流进行高级操作,如过滤、映射和归约。通过结合使用这两种技术,我们可以以声明式的方式编写更简洁、更易于理解和维护的代码。本文将介绍Lambda表达式和Stream API的基本概念,并通过示例展示它们在实际项目中的应用。
|
26天前
|
Rust 安全 Java
Java Stream 使用指南
本文介绍了Java中Stream流的使用方法,包括如何创建Stream流、中间操作(如map、filter、sorted等)和终结操作(如collect、forEach等)。此外,还讲解了并行流的概念及其可能带来的线程安全问题,并给出了示例代码。
|
2月前
|
安全 Java API
Java中的Lambda表达式与Stream API的高效结合####
探索Java编程中Lambda表达式与Stream API如何携手并进,提升数据处理效率,实现代码简洁性与功能性的双重飞跃。 ####
28 0
|
3月前
|
Java 流计算
Flink-03 Flink Java 3分钟上手 Stream 给 Flink-02 DataStreamSource Socket写一个测试的工具!
Flink-03 Flink Java 3分钟上手 Stream 给 Flink-02 DataStreamSource Socket写一个测试的工具!
51 1
Flink-03 Flink Java 3分钟上手 Stream 给 Flink-02 DataStreamSource Socket写一个测试的工具!
|
3月前
|
Java Shell 流计算
Flink-02 Flink Java 3分钟上手 Stream SingleOutputStreamOpe ExecutionEnvironment DataSet FlatMapFunction
Flink-02 Flink Java 3分钟上手 Stream SingleOutputStreamOpe ExecutionEnvironment DataSet FlatMapFunction
30 1
Flink-02 Flink Java 3分钟上手 Stream SingleOutputStreamOpe ExecutionEnvironment DataSet FlatMapFunction
|
2月前
|
Java API 数据处理
探索Java中的Lambda表达式与Stream API
【10月更文挑战第22天】 在Java编程中,Lambda表达式和Stream API是两个强大的功能,它们极大地简化了代码的编写和提高了开发效率。本文将深入探讨这两个概念的基本用法、优势以及在实际项目中的应用案例,帮助读者更好地理解和运用这些现代Java特性。
|
4月前
|
存储 Java API
Java——Stream流详解
Stream流是JDK 8引入的概念,用于高效处理集合或数组数据。其API支持声明式编程,操作分为中间操作和终端操作。中间操作包括过滤、映射、排序等,可链式调用;终端操作则完成数据处理,如遍历、收集等。Stream流简化了集合与数组的操作,提升了代码的简洁性
196 11
|
4月前
|
Java API C++
Java 8 Stream Api 中的 peek 操作
本文介绍了Java中`Stream`的`peek`操作,该操作通过`Consumer&lt;T&gt;`函数消费流中的每个元素,但不改变元素类型。文章详细解释了`Consumer&lt;T&gt;`接口及其使用场景,并通过示例代码展示了`peek`操作的应用。此外,还对比了`peek`与`map`的区别,帮助读者更好地理解这两种操作的不同用途。作者为码农小胖哥,原文发布于稀土掘金。
154 9
Java 8 Stream Api 中的 peek 操作