☆打卡算法☆LeetCode 123. 买卖股票的最佳时机 III 算法解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: “在一个数组中,表示股票的价格,计算最大收益。”

一、题目


1、算法题目

“在一个数组中,表示股票的价格,计算最大收益。”

题目链接:

来源:力扣(LeetCode)

链接: 123. 买卖股票的最佳时机 III - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:
输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
     随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
复制代码
示例 2:
输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。   
     注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。   
     因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
复制代码


二、解题


1、思路分析

这道题还可以使用动态规划思路解题,首先,需要先分析在任意一天结束后,所有的状态:

  • 1、未进行任何操作
  • 2、只进行过一次买操作
  • 3、进行了一次买操作和一次卖操作
  • 4、在完成了一笔交易的情况下,进行了第二次买操作
  • 5、完成了两笔交易

由于第一种状态利润为0不记录,其他四个状态可以记为buy1,sell1,buy2,sell2。

对于四种状态,需要通过状态转移方程得到第i天结束后的状态。

对于buy1而言,只进行一次买操作,状态转移方程为:

buy1 = max{buy1,-prices[i]}

而对于sell1而言,进行了一次买操作和一次卖操作,那么sell1的状态转移方程为:

sell1 = max{sell1,buy+prices[i]}

同理可以得到buy2和sell2对应的状态转移方程:

buy2 = max{buy2,sell1-prices[i]} sell2 = max{sell2,buy2+prices{i}}

然后就考虑一下边界条件,第i=0天时的四个状态:

buy1 = -prices[0] sell1 = 0 buy2 = -prices[0] sell2 = 0

这四个状态也就是边界条件。

在动态规划结束后,由于不能进行超过两笔交易,因此最终的答案在sell1和sell2中的最大值。

同时,如果最优的情况对应的是恰好一笔交易,它也会因为我们在转移时允许在同一天买入卖出,也就是从sell1转移到sell2,已草拟最终的答案就是sell2。


2、代码实现

代码参考:

class Solution {
    public int maxProfit(int[] prices) {
        int n = prices.length;
        int buy1 = -prices[0], sell1 = 0;
        int buy2 = -prices[0], sell2 = 0;
        for (int i = 1; i < n; ++i) {
            buy1 = Math.max(buy1, -prices[i]);
            sell1 = Math.max(sell1, buy1 + prices[i]);
            buy2 = Math.max(buy2, sell1 - prices[i]);
            sell2 = Math.max(sell2, buy2 + prices[i]);
        }
        return sell2;
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(n)

只需要遍历一遍数组。

空间复杂度: O(1)

只是用了常数级空间的变量。


三、总结

在某一天结束后,分析可能出现的状态,然后根据这些状态写出状态转移方程。

根据状态转移方程去实现代码。



相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
48 0
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
44 3
|
1月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
16天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
20天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
57 4
|
21天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-RMSprop算法解析
关注B站【肆十二】,观看更多实战教学视频。本期介绍深度学习中的RMSprop优化算法,通过调整每个参数的学习率来优化模型训练。示例代码使用PyTorch实现,详细解析了RMSprop的参数及其作用。适合初学者了解和实践。
41 1
|
1月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-SGD算法解析
SGD(随机梯度下降)是机器学习中常用的优化算法,特别适用于大数据集和在线学习。与批量梯度下降不同,SGD每次仅使用一个样本来更新模型参数,提高了训练效率。本文介绍了SGD的基本步骤、Python实现及PyTorch中的应用示例。
42 0
|
1月前
|
机器学习/深度学习 传感器 算法
Pytorch-Adam算法解析
肆十二在B站分享深度学习实战教程,本期讲解Adam优化算法。Adam结合了AdaGrad和RMSProp的优点,通过一阶和二阶矩估计,实现自适应学习率,适用于大规模数据和非稳态目标。PyTorch中使用`torch.optim.Adam`轻松配置优化器。
49 0
下一篇
无影云桌面