☆打卡算法☆LeetCode 68、文本左右对齐 算法解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: “给定单词数组和一个长度maxWidth,重新排版单词,使其成为恰好有maxWWidth个字符,且左右对齐的文本。”

一、题目


1、算法题目

“给定单词数组和一个长度maxWidth,重新排版单词,使其成为恰好有maxWWidth个字符,且左右对齐的文本。”

题目链接:

来源:力扣(LeetCode)

链接:68. 文本左右对齐 - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

给定一个单词数组和一个长度 maxWidth,重新排版单词,使其成为每行恰好有 maxWidth 个字符,且左右两端对齐的文本。

你应该使用“贪心算法”来放置给定的单词;也就是说,尽可能多地往每行中放置单词。必要时可用空格 ' ' 填充,使得每行恰好有 maxWidth 个字符。

要求尽可能均匀分配单词间的空格数量。如果某一行单词间的空格不能均匀分配,则左侧放置的空格数要多于右侧的空格数。

文本的最后一行应为左对齐,且单词之间不插入额外的空格。

说明:

  • 单词是指由非空格字符组成的字符序列。
  • 每个单词的长度大于 0,小于等于 maxWidth。
  • 输入单词数组 words 至少包含一个单词。
示例 1:
输入:
words = ["This", "is", "an", "example", "of", "text", "justification."]
maxWidth = 16
输出:
[
   "This    is    an",
   "example  of text",
   "justification.  "
]
复制代码
示例 2:
words = ["What","must","be","acknowledgment","shall","be"]
maxWidth = 16
输出:
[
  "What   must   be",
  "acknowledgment  ",
  "shall be        "
]
解释: 注意最后一行的格式应为 "shall be    " 而不是 "shall     be",
     因为最后一行应为左对齐,而不是左右两端对齐。       
     第二行同样为左对齐,这是因为这行只包含一个单词。
复制代码


二、解题


1、思路分析

这个题根据题干描述的贪心算法,需要确定的是每一行放置多少个单词,从而确定单词之间的空格个数。

对于填充空格的情况可以分为三种:

  • 最后一行:单词左对齐,单词之间应只有一个空格,在行末补充空格
  • 不是最后一行且只有一个单词:该单词左对齐,在行末补充空格
  • 不是最后一行且不只一个单词:将空格均匀的分配在单词之间


2、代码实现

代码参考:

public class Solution {
    public IList<string> FullJustify(string[] words, int maxWidth) {
        IList<string> ans = new List<string>();
        int right = 0, n = words.Length;
        while (true) {
            int left = right; // 当前行的第一个单词在 words 的位置
            int sumLen = 0; // 统计这一行单词长度之和
            // 循环确定当前行可以放多少单词,注意单词之间应至少有一个空格
            while (right < n && sumLen + words[right].Length + right - left <= maxWidth) {
                sumLen += words[right++].Length;
            }
            // 当前行是最后一行:单词左对齐,且单词之间应只有一个空格,在行末填充剩余空格
            if (right == n) {
                StringBuilder sb = Join(words, left, n, " ");
                sb.Append(Blank(maxWidth - sb.Length));
                ans.Add(sb.ToString());
                return ans;
            }
            int numWords = right - left;
            int numSpaces = maxWidth - sumLen;
            // 当前行只有一个单词:该单词左对齐,在行末填充剩余空格
            if (numWords == 1) {
                StringBuilder sb = new StringBuilder(words[left]);
                sb.Append(Blank(numSpaces));
                ans.Add(sb.ToString());
                continue;
            }
            // 当前行不只一个单词
            int avgSpaces = numSpaces / (numWords - 1);
            int extraSpaces = numSpaces % (numWords - 1);
            StringBuilder curr = new StringBuilder();
            curr.Append(Join(words, left, left + extraSpaces + 1, Blank(avgSpaces + 1))); // 拼接额外加一个空格的单词
            curr.Append(Blank(avgSpaces));
            curr.Append(Join(words, left + extraSpaces + 1, right, Blank(avgSpaces))); // 拼接其余单词
            ans.Add(curr.ToString());
        }
    }
    // Blank 返回长度为 n 的由空格组成的字符串
    public string Blank(int n) {
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < n; ++i) {
            sb.Append(' ');
        }
        return sb.ToString();
    }
    // Join 返回用 sep 拼接 [left, right) 范围内的 words 组成的字符串
    public StringBuilder Join(string[] words, int left, int right, string sep) {
        StringBuilder sb = new StringBuilder(words[left]);
        for (int i = left + 1; i < right; ++i) {
            sb.Append(sep);
            sb.Append(words[i]);
        }
        return sb;
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(m)

其中m是数组words中所有字符串的长度之和。

空间复杂度: O(m)

其中m是数组words中所有字符串的长度之和。


三、总结

先分词,再排版。

排版的时候做一个空格集合,然后动态添加。



相关文章
|
3天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
2月前
|
数据采集 自然语言处理 搜索推荐
基于qwen2.5的长文本解析、数据预测与趋势分析、代码生成能力赋能esg报告分析
Qwen2.5是一款强大的生成式预训练语言模型,擅长自然语言理解和生成,支持长文本解析、数据预测、代码生成等复杂任务。Qwen-Long作为其变体,专为长上下文场景优化,适用于大型文档处理、知识图谱构建等。Qwen2.5在ESG报告解析、多Agent协作、数学模型生成等方面表现出色,提供灵活且高效的解决方案。
187 49
|
27天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
146 30
|
6天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
秒级响应 + 99.9%准确率:法律行业文本比对技术解析
本工具基于先进AI技术,采用自然语言处理和语义匹配算法,支持PDF、Word等格式,实现法律文本的智能化比对。具备高精度语义匹配、多格式兼容、高性能架构及智能化标注与可视化等特点,有效解决文本复杂性和法规更新难题,提升法律行业工作效率。
|
1月前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
248 15
|
28天前
|
前端开发 UED
React 文本区域组件 Textarea:深入解析与优化
本文介绍了 React 中 Textarea 组件的基础用法、常见问题及优化方法,包括状态绑定、初始值设置、样式自定义、性能优化和跨浏览器兼容性处理,并提供了代码案例。
52 8
|
2月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
2月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
75 4
|
2月前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####

热门文章

最新文章

推荐镜像

更多