☆打卡算法☆LeetCode 68、文本左右对齐 算法解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: “给定单词数组和一个长度maxWidth,重新排版单词,使其成为恰好有maxWWidth个字符,且左右对齐的文本。”

一、题目


1、算法题目

“给定单词数组和一个长度maxWidth,重新排版单词,使其成为恰好有maxWWidth个字符,且左右对齐的文本。”

题目链接:

来源:力扣(LeetCode)

链接:68. 文本左右对齐 - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

给定一个单词数组和一个长度 maxWidth,重新排版单词,使其成为每行恰好有 maxWidth 个字符,且左右两端对齐的文本。

你应该使用“贪心算法”来放置给定的单词;也就是说,尽可能多地往每行中放置单词。必要时可用空格 ' ' 填充,使得每行恰好有 maxWidth 个字符。

要求尽可能均匀分配单词间的空格数量。如果某一行单词间的空格不能均匀分配,则左侧放置的空格数要多于右侧的空格数。

文本的最后一行应为左对齐,且单词之间不插入额外的空格。

说明:

  • 单词是指由非空格字符组成的字符序列。
  • 每个单词的长度大于 0,小于等于 maxWidth。
  • 输入单词数组 words 至少包含一个单词。
示例 1:
输入:
words = ["This", "is", "an", "example", "of", "text", "justification."]
maxWidth = 16
输出:
[
   "This    is    an",
   "example  of text",
   "justification.  "
]
复制代码
示例 2:
words = ["What","must","be","acknowledgment","shall","be"]
maxWidth = 16
输出:
[
  "What   must   be",
  "acknowledgment  ",
  "shall be        "
]
解释: 注意最后一行的格式应为 "shall be    " 而不是 "shall     be",
     因为最后一行应为左对齐,而不是左右两端对齐。       
     第二行同样为左对齐,这是因为这行只包含一个单词。
复制代码


二、解题


1、思路分析

这个题根据题干描述的贪心算法,需要确定的是每一行放置多少个单词,从而确定单词之间的空格个数。

对于填充空格的情况可以分为三种:

  • 最后一行:单词左对齐,单词之间应只有一个空格,在行末补充空格
  • 不是最后一行且只有一个单词:该单词左对齐,在行末补充空格
  • 不是最后一行且不只一个单词:将空格均匀的分配在单词之间


2、代码实现

代码参考:

public class Solution {
    public IList<string> FullJustify(string[] words, int maxWidth) {
        IList<string> ans = new List<string>();
        int right = 0, n = words.Length;
        while (true) {
            int left = right; // 当前行的第一个单词在 words 的位置
            int sumLen = 0; // 统计这一行单词长度之和
            // 循环确定当前行可以放多少单词,注意单词之间应至少有一个空格
            while (right < n && sumLen + words[right].Length + right - left <= maxWidth) {
                sumLen += words[right++].Length;
            }
            // 当前行是最后一行:单词左对齐,且单词之间应只有一个空格,在行末填充剩余空格
            if (right == n) {
                StringBuilder sb = Join(words, left, n, " ");
                sb.Append(Blank(maxWidth - sb.Length));
                ans.Add(sb.ToString());
                return ans;
            }
            int numWords = right - left;
            int numSpaces = maxWidth - sumLen;
            // 当前行只有一个单词:该单词左对齐,在行末填充剩余空格
            if (numWords == 1) {
                StringBuilder sb = new StringBuilder(words[left]);
                sb.Append(Blank(numSpaces));
                ans.Add(sb.ToString());
                continue;
            }
            // 当前行不只一个单词
            int avgSpaces = numSpaces / (numWords - 1);
            int extraSpaces = numSpaces % (numWords - 1);
            StringBuilder curr = new StringBuilder();
            curr.Append(Join(words, left, left + extraSpaces + 1, Blank(avgSpaces + 1))); // 拼接额外加一个空格的单词
            curr.Append(Blank(avgSpaces));
            curr.Append(Join(words, left + extraSpaces + 1, right, Blank(avgSpaces))); // 拼接其余单词
            ans.Add(curr.ToString());
        }
    }
    // Blank 返回长度为 n 的由空格组成的字符串
    public string Blank(int n) {
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < n; ++i) {
            sb.Append(' ');
        }
        return sb.ToString();
    }
    // Join 返回用 sep 拼接 [left, right) 范围内的 words 组成的字符串
    public StringBuilder Join(string[] words, int left, int right, string sep) {
        StringBuilder sb = new StringBuilder(words[left]);
        for (int i = left + 1; i < right; ++i) {
            sb.Append(sep);
            sb.Append(words[i]);
        }
        return sb;
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(m)

其中m是数组words中所有字符串的长度之和。

空间复杂度: O(m)

其中m是数组words中所有字符串的长度之和。


三、总结

先分词,再排版。

排版的时候做一个空格集合,然后动态添加。



相关文章
|
19天前
|
负载均衡 算法 Java
Spring Cloud全解析:负载均衡算法
本文介绍了负载均衡的两种方式:集中式负载均衡和进程内负载均衡,以及常见的负载均衡算法,包括轮询、随机、源地址哈希、加权轮询、加权随机和最小连接数等方法,帮助读者更好地理解和应用负载均衡技术。
|
18天前
|
机器学习/深度学习 人工智能 编解码
深入探索AI文生语音技术的奥秘:从文本输入到逼真语音输出的全链条语音合成过程解析
【9月更文挑战第2天】深入探索AI文生语音技术的奥秘:从文本输入到逼真语音输出的全链条语音合成过程解析
 深入探索AI文生语音技术的奥秘:从文本输入到逼真语音输出的全链条语音合成过程解析
|
9天前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
19 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
1月前
|
算法
测试工程师的技能升级:LeetCode算法挑战与职业成长
这篇文章通过作者亲身体验LeetCode算法题的过程,探讨了测试工程师学习算法的重要性,并强调了算法技能对于测试职业成长的必要性。
48 1
测试工程师的技能升级:LeetCode算法挑战与职业成长
|
25天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
154 1
|
1月前
|
算法 JavaScript 前端开发
国标非对称加密:RSA算法、非对称特征、js还原、jsencrypt和rsa模块解析
国标非对称加密:RSA算法、非对称特征、js还原、jsencrypt和rsa模块解析
119 1
|
1月前
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
73 1
|
1月前
|
机器学习/深度学习 算法 TensorFlow
【深度学习】深度学习语音识别算法的详细解析
深度学习语音识别算法是一种基于人工神经网络的语音识别技术,其核心在于利用深度神经网络(Deep Neural Network,DNN)自动从语音信号中学习有意义的特征,并生成高效的语音识别模型。以下是对深度学习语音识别算法的详细解析
52 5
|
1月前
|
JavaScript 算法 前端开发
"揭秘Vue.js的高效渲染秘诀:深度解析Diff算法如何让前端开发快人一步"
【8月更文挑战第20天】Vue.js是一款备受欢迎的前端框架,以其声明式的响应式数据绑定和组件化开发著称。在Vue中,Diff算法是核心之一,它高效计算虚拟DOM更新时所需的最小实际DOM变更,确保界面快速准确更新。算法通过比较新旧虚拟DOM树的同层级节点,递归检查子节点,并利用`key`属性优化列表更新。虽然存在局限性,如难以处理跨层级节点移动,但Diff算法仍是Vue高效更新机制的关键,帮助开发者构建高性能Web应用。
47 1
|
1月前
|
机器学习/深度学习 自然语言处理 负载均衡
揭秘混合专家(MoE)模型的神秘面纱:算法、系统和应用三大视角全面解析,带你领略深度学习领域的前沿技术!
【8月更文挑战第19天】在深度学习领域,混合专家(Mixture of Experts, MoE)模型通过整合多个小型专家网络的输出以实现高性能。从算法视角,MoE利用门控网络分配输入至专家网络,并通过组合机制集成输出。系统视角下,MoE需考虑并行化、通信开销及负载均衡等优化策略。在应用层面,MoE已成功应用于Google的BERT模型、Facebook的推荐系统及Microsoft的语音识别系统等多个场景。这是一种强有力的工具,能够解决复杂问题并提升效率。
54 2

推荐镜像

更多