《深度学习导论及案例分析》一1.2深层网络的特点和优势

简介:

####本节书摘来自华章出版社《深度学习导论及案例分析》一书中的第1章,第1.2节,作者李玉鑑 张婷,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.2深层网络的特点和优势

神经网络由许多简单的、互连的称为神经元的处理器组成。每一个神经元产生一系列的实值激活[73],其中输入神经元通过传感器激活,其余神经元通过连接激活。

例如,图1.1是两个浅层网络的例子,其中图1.1a是一个单隐层的普通神经
网络,图1.1b是一个单隐层的和积网络。图1.2是两个深层网络的例子,其中图1.2a是一个多层神经网络,图1.2b是一个多层和积网络。
QQ_20170524090500
QQ_20170524090515

根据Bengio的定义[8],深层网络由多层自适应非线性单元组成。换句话说,深层网络是非线性模块的级联,在所有层次上都包含可训练的参数。在理论上,深层网络和浅层网络的数学描述是类似的,而且都能够通过函数逼近表达数据的内在关系和本质特征。不过应注意,网络虽然在狭义上是指由神经元构成的神经网络,但在广义上可以指任何具有网络结构的学习模型。

迄今还没有公认的区分深层网络和浅层网络的深度划界标准。依据Schmidhuber的观点[73],深层网络和浅层网络可以用得分路径(或译为信度分配路径,Credit Assignment Path,CAP)深度加以区分。得分路径是一条可学习的、连接行为和结果的因果链。对于前馈神经网络,得分路径深度,也就是网络深度,是网络的隐含层数加1(输出层也是可学习的)。对于循环神经网络,得分路径长度可能是无限的,因为信号可以多次通过同一个层。一般认为深层网络至少包含3个非输入层或者CAP>2,而非常深的网络应该深度(或CAP)至少大于10。在工程实践中,深层网络通常是一个多层人工神经网络,可以包含多个隐含层和多达几百万个自由参数。

浅层网络对机器学习来说也很重要,包括单隐层网络[74]、高斯混合模型(Gaussian Mixture Model,GMM)[75]、隐马尔可夫模型(Hidden Markov Model,HMM)[76]、条件随机场(Conditionsl Random Field,CRF)[77]、支持向量机(Support Vector Machine,SVM)[78]、逻辑回归[79]、最大熵模型[80],等等。这些网络的共同特点是,它们都使用不超过三层的结构将原始输入信号变换到一个特征空间。毋庸置疑,浅层网络对解决许多简单的和有良好约束的问题非常有效,但在解决真实世界的复杂应用问题时,往往出现函数表达能力不足的情况。这是因为在处理某些问题时,可能需要指数增长的计算单元,而此时深层网络则可能仅需相对很少的计算单元[81]。

作为例子,不妨来分析一个具有递归结构的和积网络的函数表达能力。设输入变量的个数n=4i,其中i是正整数。l0代表输入层,其中第j个节点表示为l0j=xj,1≤j≤n。分别构造奇数层和偶数层的节点如下:

l2k+1j=l2k2j-1•l2k2j,0≤k≤i-1和1≤j≤22(i-k)-1

l2kj=λjkl2k-12j-1+μjkl2k-12j,1≤k≤i和1≤j≤22(i-k)(1.1)# 

其中,权值λjk和权值μjk都为正数。

该和积网络的输出f(x1,…,xn)=l2i1∈R是一个单节点。当i=1时,网络共有3个非输入节点,结构如图1.3所示。由于对任意正整数i,QQ_20170524091416

这个和积网络在不计输入层时共有2i层,其中包含的(非输入)节点总数为1+2+4+8+…+22i-1=22i-1=4i-1=n-1,所以网络规模仅具有线性复杂度。显然,这个递归和积网络在i>1时是一个深层网络。
如果用图1.1b中的单隐层和积网络来计算函数f(x1,x2,…,xn),那么需要把它改写成输入变量乘积的加权和形式。当所有权值都取1时,可以得到下面的表达式:
f(x1,x2,…,x4i)=x1x2x5x6…x4i-1-3x4i-1-2+…(1.2)
由于在该表达式中乘积项的数量为m2i=2n-1,因此用单隐层和积网络计算需要2n-1个积节点和一个和节点,共需2n-1+1个节点,网络规模具有指数复杂度。因为在n较大时,2n-1+1将远远大于n-1,所以用浅层和积网络计算具有n个输入的函数,需要的节点个数可能比深层和积网络多得多。例如,当n=45=1024时,用浅层和积网络计算f(x1,…,xn)=l2i1,需要21024-1+1=231+1=2147483649个节点,而用深层和积网络仅需1024-1=1023个节点。

由此可见,在表达同样的复杂函数时,与浅层网络相比,深层网络可能只需要很少的节点和很少的参数。这意味着,在总节点数大致相同的情况下,深层网络通常比浅层网络的函数表达能力更强。

相关文章
|
12天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
27 7
|
13天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习的奥秘:探索神经网络背后的魔法
【10月更文挑战第22天】本文将带你走进深度学习的世界,揭示神经网络背后的神秘面纱。我们将一起探讨深度学习的基本原理,以及如何通过编程实现一个简单的神经网络。无论你是初学者还是有一定基础的学习者,这篇文章都将为你提供有价值的信息和启示。让我们一起踏上这段奇妙的旅程吧!
|
12天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
49 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
14天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
2天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
7 0
|
3天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
9天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
11天前
|
机器学习/深度学习 算法 计算机视觉
深度学习与生活:如何利用卷积神经网络识别日常物品
【10月更文挑战第24天】在这篇文章中,我们将探索深度学习如何从理论走向实践,特别是卷积神经网络(CNN)在图像识别中的应用。通过一个简单的示例,我们将了解如何使用CNN来识别日常生活中的物体,如水果和家具。这不仅是对深度学习概念的一次直观体验,也是对技术如何融入日常生活的一次深刻反思。文章将引导读者思考技术背后的哲理,以及它如何影响我们的生活和思维方式。
|
16天前
|
机器学习/深度学习 人工智能 自动驾驶
深入理解深度学习中的卷积神经网络(CNN)
【10月更文挑战第18天】深入理解深度学习中的卷积神经网络(CNN)
26 0
|
6天前
|
存储 安全 算法
网络安全与信息安全:漏洞、加密技术及安全意识的重要性
如今的网络环境中,网络安全威胁日益严峻,面对此类问题,除了提升相关硬件的安全性、树立法律法规及行业准则,增强网民的网络安全意识的重要性也逐渐凸显。本文梳理了2000年以来有关网络安全意识的研究,综述范围为中国知网中篇名为“网络安全意识”的期刊、硕博论文、会议论文、报纸。网络安全意识的内涵是在“网络安全”“网络安全风险”等相关概念的发展中逐渐明确并丰富起来的,但到目前为止并未出现清晰的概念界定。此领域内的实证研究主要针对网络安全意识现状与问题,其研究对象主要是青少年。网络安全意识教育方面,很多学者总结了国外的成熟经验,但在具体运用上仍缺乏考虑我国的实际状况。 内容目录: 1 网络安全意识的相关

热门文章

最新文章