《深度学习导论及案例分析》一1.2深层网络的特点和优势

简介:

####本节书摘来自华章出版社《深度学习导论及案例分析》一书中的第1章,第1.2节,作者李玉鑑 张婷,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.2深层网络的特点和优势

神经网络由许多简单的、互连的称为神经元的处理器组成。每一个神经元产生一系列的实值激活[73],其中输入神经元通过传感器激活,其余神经元通过连接激活。

例如,图1.1是两个浅层网络的例子,其中图1.1a是一个单隐层的普通神经
网络,图1.1b是一个单隐层的和积网络。图1.2是两个深层网络的例子,其中图1.2a是一个多层神经网络,图1.2b是一个多层和积网络。
QQ_20170524090500
QQ_20170524090515

根据Bengio的定义[8],深层网络由多层自适应非线性单元组成。换句话说,深层网络是非线性模块的级联,在所有层次上都包含可训练的参数。在理论上,深层网络和浅层网络的数学描述是类似的,而且都能够通过函数逼近表达数据的内在关系和本质特征。不过应注意,网络虽然在狭义上是指由神经元构成的神经网络,但在广义上可以指任何具有网络结构的学习模型。

迄今还没有公认的区分深层网络和浅层网络的深度划界标准。依据Schmidhuber的观点[73],深层网络和浅层网络可以用得分路径(或译为信度分配路径,Credit Assignment Path,CAP)深度加以区分。得分路径是一条可学习的、连接行为和结果的因果链。对于前馈神经网络,得分路径深度,也就是网络深度,是网络的隐含层数加1(输出层也是可学习的)。对于循环神经网络,得分路径长度可能是无限的,因为信号可以多次通过同一个层。一般认为深层网络至少包含3个非输入层或者CAP>2,而非常深的网络应该深度(或CAP)至少大于10。在工程实践中,深层网络通常是一个多层人工神经网络,可以包含多个隐含层和多达几百万个自由参数。

浅层网络对机器学习来说也很重要,包括单隐层网络[74]、高斯混合模型(Gaussian Mixture Model,GMM)[75]、隐马尔可夫模型(Hidden Markov Model,HMM)[76]、条件随机场(Conditionsl Random Field,CRF)[77]、支持向量机(Support Vector Machine,SVM)[78]、逻辑回归[79]、最大熵模型[80],等等。这些网络的共同特点是,它们都使用不超过三层的结构将原始输入信号变换到一个特征空间。毋庸置疑,浅层网络对解决许多简单的和有良好约束的问题非常有效,但在解决真实世界的复杂应用问题时,往往出现函数表达能力不足的情况。这是因为在处理某些问题时,可能需要指数增长的计算单元,而此时深层网络则可能仅需相对很少的计算单元[81]。

作为例子,不妨来分析一个具有递归结构的和积网络的函数表达能力。设输入变量的个数n=4i,其中i是正整数。l0代表输入层,其中第j个节点表示为l0j=xj,1≤j≤n。分别构造奇数层和偶数层的节点如下:

l2k+1j=l2k2j-1•l2k2j,0≤k≤i-1和1≤j≤22(i-k)-1

l2kj=λjkl2k-12j-1+μjkl2k-12j,1≤k≤i和1≤j≤22(i-k)(1.1)# 

其中,权值λjk和权值μjk都为正数。

该和积网络的输出f(x1,…,xn)=l2i1∈R是一个单节点。当i=1时,网络共有3个非输入节点,结构如图1.3所示。由于对任意正整数i,QQ_20170524091416

这个和积网络在不计输入层时共有2i层,其中包含的(非输入)节点总数为1+2+4+8+…+22i-1=22i-1=4i-1=n-1,所以网络规模仅具有线性复杂度。显然,这个递归和积网络在i>1时是一个深层网络。
如果用图1.1b中的单隐层和积网络来计算函数f(x1,x2,…,xn),那么需要把它改写成输入变量乘积的加权和形式。当所有权值都取1时,可以得到下面的表达式:
f(x1,x2,…,x4i)=x1x2x5x6…x4i-1-3x4i-1-2+…(1.2)
由于在该表达式中乘积项的数量为m2i=2n-1,因此用单隐层和积网络计算需要2n-1个积节点和一个和节点,共需2n-1+1个节点,网络规模具有指数复杂度。因为在n较大时,2n-1+1将远远大于n-1,所以用浅层和积网络计算具有n个输入的函数,需要的节点个数可能比深层和积网络多得多。例如,当n=45=1024时,用浅层和积网络计算f(x1,…,xn)=l2i1,需要21024-1+1=231+1=2147483649个节点,而用深层和积网络仅需1024-1=1023个节点。

由此可见,在表达同样的复杂函数时,与浅层网络相比,深层网络可能只需要很少的节点和很少的参数。这意味着,在总节点数大致相同的情况下,深层网络通常比浅层网络的函数表达能力更强。

相关文章
|
23天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
232 55
|
1天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
14 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
13天前
|
存储 安全 物联网
浅析Kismet:无线网络监测与分析工具
Kismet是一款开源的无线网络监测和入侵检测系统(IDS),支持Wi-Fi、Bluetooth、ZigBee等协议,具备被动监听、实时数据分析、地理定位等功能。广泛应用于安全审计、网络优化和频谱管理。本文介绍其安装配置、基本操作及高级应用技巧,帮助用户掌握这一强大的无线网络安全工具。
43 9
浅析Kismet:无线网络监测与分析工具
|
20天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
59 31
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
117 36
|
16天前
|
数据采集 机器学习/深度学习 人工智能
基于AI的网络流量分析:构建智能化运维体系
基于AI的网络流量分析:构建智能化运维体系
90 13
|
29天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
114 18
|
26天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##

热门文章

最新文章