什么是寄存器

简介: Java编译器输出的指令流,基本上是一种基于栈的指令集架构,而与之相对的另外一套常用的指令集架构是基于寄存器的指令集。早期的android,即android4.4之前使用的JVM是Dalvik VM,就是基于寄存器架构的。

与java相关的


  • Java编译器输出的指令流,基本上是一种基于栈的指令集架构,而与之相对的另外一套常用的指令集架构是基于寄存器的指令集。早期的android,即android4.4之前使用的JVM是Dalvik VM,就是基于寄存器架构的。


  • 基于栈的指令集主要的优点是可移植,寄存器由硬件直接提供,程序直接依赖这些硬件寄存器则不可避免地受到硬件的约束。
  • 栈架构指令集的主要缺点是执行速度相对来说会稍慢一些。所有主流物理机的指令集都是寄存器架构。


看示例找感觉


以上是一些结论,本文的重点是讨论上文中所提的寄存器,那寄存器是什么呢?其实这些计算机的原理知识之前上学的时候都学过,很遗憾当时听的也很头大,现在都还给老师了。


进入正题,先来看下维基百科的解释:


10.jpg


嗯,反正我看完是没什么感觉


再来看网上的一个例子:


“现代计算机,虽然性能很高,但是和上世纪7、8十年代的计算机比,其实结构都差不多。现在讲存储,一般讲有内存和外存,内存一般有寄存器(register),缓存(cache)和内存(memory),有些小型应用例如MCU没有cache,甚至没有memory——直接从flash/ROM到register。寄存器是CPU基础单元,CPU直接处理的内存就它了,好比医院,医生对面的椅子就是寄存器,要看病的病人(data)就坐这个椅子(register);已经挂号的(data)进入诊室(cache)排队,其他的就在医院里(memory)。医生可以操作的就是面对面的病人,其他人要看病(如急病)也需先坐上这个位置,这是最快的。诊室里的座位相对于cache,一般cache都是sram存储器,速度很快,但一般cpu不会直接访问,而是要把数据挪到register后才可直接操作,而一般的内存为DRAM,速度比SRAM慢多了,而且通过总线访问,速度就更慢了。”


再看下图:计算机的存储层次(memory hierarchy)之中,寄存器(register)最快,内存其次,最慢的是硬盘。


11.png


最后再看一个计算机的存储体系:


12.jpg


图中Registers就是寄存器,怎么样,有点感觉了吗?


从头来说


假设我们做一个回向电路,把输出连回到输入,我们用OR门举例:


13.jpg


首先都输入0,那么输出将会是0


14.jpg


如果将A变成1,那么输出将会是1


15.jpg


一转眼的功夫输出回到B,那么B为1,OR门看到的结果是输入A、B都为1,

1 OR 1 仍然为1,所以输出不变


16.jpg


如果将A变成0,0 OR 1 输出仍然是 1


17.jpg


现在我们有个电路能记录1,然而却有个小问题,就是无论怎么试,都无法从1变回0(如下两图)


20.jpg


25.jpg21.jpg


现在看一个相同电路,不过这次用AND 门


22.jpg


A、B均为1,  1 AND 1 为 1


25.jpg


如果之后A设置为0,由于是AND门,所以输出为0,B为0


27.jpg


28.jpg


这个电路能记录0,和之前那个相反,无论A设置什么值,电路始终输出0


30.jpg


31.jpg


现在我们有了能记录0和1的电路


33.jpg


为了做出有用的存储,我们将两个电路合起来,变成:AND-OR LATCH


34.jpg


它有两个输入:

  • 设置(set)   输入,将输出变成1
  • 复位(reset)输入,将输出变成0


35.jpg


36.jpg


如果“设置”和“复位”都是0,电路会输出最后放入的内容,也就是说它存住了1bit的信息!这就是存储。


之所以叫“LATCH(闩锁)”,是因为它“锁定”一个特定值并保持状态。将数据放入叫“写入”,将数据输出叫“读取”。好了,现在我们终于有办法存一个bit了。

麻烦的是用两条线来输入,也就是SET和RESET,有点儿麻烦,为了更易用,我们希望只有一条输入线,将它设为0或1来存储值。还需要一根线来“启用”。“启用”时允许写入,没“启用”时锁定。这条线叫“允许写入线”。加一些额外逻辑门,可以做出以下电路 :


38.jpg


这个电路称为“门锁”,因为门可以打开或关上。这个电路稍微有些复杂了。


39.jpg


我们不想关心单独的逻辑门,我们封装一下,把“门锁”放到盒子里(一个能存单个bit的盒子)。来看下这个新组件:


40.jpg


我们来测试一下这个新组件,一切都从0开始,如果将输入从0变成1,或从1变成0,什么也不会发生,输出仍然是0 。因为WRITE ENABLE 是关闭的(0),来防止内容变化


41.jpg


42.jpg


所以当WRITE ENABLE输入1,打开门后可以输入1,并将1存起来,这样输出也是1了。


43.jpg


我们可以关掉门(WRITE ENABLE =0),输出会保持1,此时输入随便是什么,输出都不会变(保持1)。


44.jpg


如果再次打开门(WRITE ENABLE =1),如果输入为0,输出也将是0:


45.jpg



最后关上门,输出会保持0


47.jpg


当然存1bit没什么大用,但我们没限制只能用一个组件,如果我们并排放8个,可以存8位,比如一个8bit数字。一组这样的组件叫寄存器寄存器能存多少个Bit,叫“位宽”。早期电脑用8位寄存器,然后是16位,32位,如今很多计算机都有64位宽的寄存器了。


CPU中寄存器又分为指令寄存器(IR)、程序计数器(PC)、地址寄存器(AR)、数据寄存器(DR)、累加寄存器(AC)、程序状态字寄存器(PSW),这里就不深入讨论了。







相关文章
|
人工智能 监控 Swift
魔搭社区LLM模型部署实践 —— 以ChatGLM3为例
本文将以ChatGLM3-6B为例,介绍在魔搭社区如何部署LLM
|
运维 Devops jenkins
DevOps实践:自动化部署与持续集成的实现之旅
本文旨在通过一个实际案例,向读者展示如何将DevOps理念融入日常工作中,实现自动化部署和持续集成。我们将从DevOps的基础概念出发,逐步深入到工具的选择、环境的搭建,以及流程的优化,最终实现一个简单而高效的自动化部署流程。文章不仅提供代码示例,更注重于实践中的思考和问题解决,帮助团队提高软件开发和运维的效率。
|
9月前
|
机器学习/深度学习 算法 数据可视化
基于线性核函数的SVM数据分类算法matlab仿真
本程序基于线性核函数的SVM算法实现数据分类,使用MATLAB2022A版本运行。程序生成随机二维数据并分为两组,通过自定义SVM模型(不依赖MATLAB工具箱)进行训练,展示不同惩罚参数C下的分类结果及决策边界。SVM通过寻找最优超平面最大化类别间隔,实现高效分类。 核心代码包括数据生成、模型训练和结果可视化,最终绘制了两类数据点及对应的决策边界。此实现有助于理解SVM的工作原理及其在实际应用中的表现。
|
9月前
|
机器学习/深度学习 计算机视觉 网络架构
YOLOv11改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
YOLOv11改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
668 19
|
机器学习/深度学习 自动驾驶 机器人
深度学习之3D场景重建
基于深度学习的3D场景重建是通过深度学习技术从多视角图像或视频数据中重建三维场景结构的过程。它在计算机视觉、增强现实、虚拟现实、机器人导航和自动驾驶等多个领域具有广泛应用。
591 4
|
DataWorks 关系型数据库 MySQL
DataWorks产品使用合集之mysql节点如何插入数据
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
205 1
|
监控 Java
内存溢出与内存泄漏的区别
内存溢出与内存泄漏的区别
390 2
|
数据采集 人工智能 JSON
跨越千年医学对话:用AI技术解锁中医古籍知识,构建能够精准问答的智能语言模型,成就专业级古籍解读助手(LLAMA)
跨越千年医学对话:用AI技术解锁中医古籍知识,构建能够精准问答的智能语言模型,成就专业级古籍解读助手(LLAMA)【2月更文挑战第1天】
 跨越千年医学对话:用AI技术解锁中医古籍知识,构建能够精准问答的智能语言模型,成就专业级古籍解读助手(LLAMA)
|
SQL Java 数据库连接
复杂 SQL 实现分组分情况分页查询
在处理数据库查询时,分页是一个常见的需求。尤其是在处理大量数据时,一次性返回所有结果可能会导致性能问题。因此,我们需要使用分页查询来限制返回的结果数量。同时,根据特定的条件筛选数据也是非常常见的需求。在本博客中,我们将探讨如何根据 camp_status 字段分为 6 种情况进行分页查询,并根据 camp_type 字段区分活动类型,返回不同的字段。我们将使用 SQL 变量来实现这一功能,并通过示例进行详细解释。
240 2
|
API C++ Windows
Windows API Hooking 学习
Windows API Hooking 学习