演讲稿丨史忠植 司马贺的人工智能创新之路

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介:

  女士们,先生们,各位来宾,早上好!很高兴来参加这次研讨会,我报告的题目是“司马贺的人工智能创新之路”,重点探索关于人工智能方面司马贺所做的贡献。


    前面会议主持马老师已经说了,今天正好是美国时间司马贺的100周年华诞,所以我们在这个时间开这个研讨会,我觉得非常有意义,来探讨我们大师的足迹,为我们开创人工智能研究得到很多的启发。


    司马贺在卡内基•梅隆大学工作了52年,这个图是司马贺在卡内基•梅隆大学的办公楼。司马贺把他的一生看作是“歧路花园”,渉足过广泛的领域。他获得了9个博士学位。在每个领域他都作出了巨大贡献,产生了革命性的影响。1975年他获得了在我们计算机领域里面的最高奖---图灵奖;1978年获得了国际上有名的经济学的诺贝尔奖;1986年他又获得了美国全国科学家奖,类似我国最高的国家奖了。所以我们可以看到,在司马贺他的“歧路花园”的一生中,他在各个领域都作出了很大的贡献,产生了革命性的影响。


    在这儿,我把司马贺先生他在人工智能领域的创新贡献归结为四句话:符号主义的创始人,决策理论的开拓者,逻辑理论家的发明人,科学知识发现的倡导者。下面我就沿这四个方面,来探寻司马贺先生在人工智能的创新之路。


一、符号主义的创始人


    前面林老师讲了,司马贺首先一个贡献,就是提出了物理符号系统,把人看成是一个信息加工的系统,“processing”在心理学喜欢叫“加工”,作为我们搞计算机、搞信息的,跟心理学领域有不同的术语,经常称为“处理”。所以这儿我有时可能讲信息加工,有时讲信息处理,当然更多的是信息处理。这样把一个人的思维过程看成是信息处理的过程。符号(symbol)就看成是模式(pattern),所谓的物理符号系统就是把它看成为可以辨认和区分的不同的符号。


    他在这样一个物理符号系统基础上提出来人这样一个思维的模型,物理符号系统。这张图我们可以看到,又像是计算机,又像是我们人脑,所以把这样一个人的思维过程和我们计算机的处理过程结合起来。这里面最早提出有10种操作,我们搞计算机的人很熟悉了,很像指令系统。计算机有这样一个指令系统,就可以操作了。他们提出一个物理符号系统进行的操作的类型,在这个系统里面他们提出6种这样的功能。


    1980年司马贺等又进一步提出了纯认知系统模型,在原来的物理符号系统上面增加了前面林老师讲到了情感、认知,这样一个纯认知系统里面都包括进去了。因为司马贺和纽厄尔在认知心理学和表处理方面的贡献,所以ACM授予他们1975年最高的图灵奖。


    在1976年图灵奖的演讲中,纽厄尔和司马贺正式提出了物理符号系统假设,这样的物理符号系统假设就是说物理系统表现智能行为必要和充分的条件是它是一个物理符号系统。关于必要跟充分,可能大家都很清楚了。这样的物理符号系统假设就是我们传统的人工智能的理论基础,所以我们也把传统的人工智能叫做符号主义,开辟了从信息加工观点来研究人类思维的方向,同时推动了认知科学和人工智能的发展。


    在认知方面,另一个大的贡献,就是提出了组块理论(chunking theory),chunk有的叫组块,有的叫知识块,实际上是用米勒“神奇数字7加减2”得出的启发,在1973年提出来作为短时记忆的容量是7加减2个项,他们就提出了组块理论。组块理论是现在有名的认知系统之一SOAR系统的理论基础。这个系统是在1987年由纽厄尔等三个人在<Artificial Intelligence>刊物上正式发表文章,提出了这样一个认知系统。这个是纽厄尔那本书,他们想把这样一个SOAR系统作为一个统一的认知框架。


    在2009年又把原来的SOAR系统进行扩算,把行进记忆和一些感知方面加进来,扩展成为了SOAR9这样一个系统。另一个方面,作为组块理论,对我们现在的自然语言处理影响很大。我们自然语言处理目前怎么样把统计这样的自然语言处理和我们的语料库结合起来,很重要的就是采用了这样的理论,组块策略就是将零散的构件组成有意义的单元,从信息加工的角度,组块就是我们用人对信息进行组织或再编码这样的一个单元。所以在我们自然语言处理,我觉得这个组块理论是起了非常大的作用。


二、决策理论的开拓者


    司马贺是决策理论的开拓者。前面林老师也讲了,司马贺从行为主义提出了行政学和管理学,在这里面一个核心的思想就是一个决策理论,提出了决策理论。


    这些是司马贺在管理决策方面所发表的著作。在管理学术理论方面主要有四个观点:第一,决策是管理的核心。第二,他系统的算出了决策的四个阶段。第三,提出来作为“令人满意”来代替“最优化”。第四,将这样的决策分为程序化决策和非程序化决策两种类型。


    这个可能很多人很熟了,特别是搞管理的。目前,作为决策过程就是这样四个阶段:搜集情况阶段;拟定计划阶段;选定计划阶段;评价计划阶段。我们在决策有关的理论或者是有关的文章里面到处可以看到这样四个阶段。


    从理论上来讲,两个理论,一个是有限理性理论。有限理性理论定义为一个非感情的计算、思考和心智的方法。这个有限理性理论在我们人工智能里面也产生了很大的影响,特别是我们在研究智能体(agent)的时候,都是从有限理性理论的基础上来研究智能体的行为。


    满意型决策,这个对我们人工智能也是产生了很大的影响。因为我们人工智能就是采用一种启发式的方法来达到这样的满意性,而不是去追求最优化,得到满意解,对我们人工智能进行问题求解产生了很大的影响。


三、逻辑理论家的发明人


    大家都知道,人工智能是在1956年在达特茅斯会上由我们的老前辈们创建,这张图是2009年他们当时参加达特茅斯会议的老前辈们的合影。在这个会上,一项重大的成果就是《逻辑理论家(Logic Theorist)》,司马贺和纽厄尔他们就想用计算机来进行数学定理的证明。他们用《逻辑理论家》这样的程序证明了《数学原理》第二章里面的38个定理。到了1963年他们又完善,把第二章里面全部的52条定理都进行了证明。这样一个逻辑理论家主要是通过了分解和代入来进行机器定理的证明。数学机械化是科学研究领域里面一个很重要的、活跃的理论问题,我们这些老前辈们在数学机械化里面作出了贡献。我们华人里面有王浩,现在吴先生,在数学机械化方面作出了创造性的工作。吴先生提出了“吴方法”,吴先生也是我们人工智能的旗帜,中国人工智能学会最高的科技成果奖项就是用吴先生的名字来命名。在20世纪50年代逻辑理论家在数学机械化方面作出了重大的贡献。


    另一个在20世纪50年代的工作,就是通用问题求解,Newell跟Shaw和Simon他们就研究所谓的GPS这样的程序,这样一个程序后来就变成了MEA,就是手段—目的分析方法,这是一个非常有名的分析方法。这样的分析方法实际上就是用启发式进行搜索,我们当前处理类比问题MEA是一个很重要的方法,是机器学里面很重要的技术。通过类比,通过相似性进行聚类、分类,这是很重要的。司马贺是逻辑理论家的发明人,同时在问题求解也作出了很大的贡献。


四、科学知识发现的倡导者


    可能搞机器学习的都知道,我们现在用的最广的简单的学习模型就是司马贺提出来的,他对学习的定义是:如果一个系统能够通过执行某种过程而改进它的性能,这就是学习。简单来讲,性能的改进就是学习,这就是司马贺提出来一个简单的学习模型。


    我觉得在学习方面,司马贺倡导了科学知识发现,所他从20世纪70年代末到80年代就研究了这么多个系统。在他的倡导之下研究了这么多的科学发现的系统,主要就是想从19世纪的物理学、天文学、化学这样一些实验数据里面进行重新发现科学的定理。这个就是有名的BACON系统,研制了6个这样的BACON系统,还有KEKADA系统,采用诺贝尔奖获得者德国生物化学家克雷布斯发现尿素的数据,Simon领导他的实验室怎么样通过这个尿素的数据用计算机重新发现尿素的规律。


    我们总结起来,司马贺在科学知识发现方面做了大量的工作,有数学定理的发现、定性定理的发现、结构模型的发现、处理模型的发现,这个表可以看到,司马贺在科学知识发现方面做出的贡献。


    这是科学知识发现的流程。在科学知识发现方面,现在也有了重要的应用,一个就是气候变化,怎么样通过气候的变化和碳的排放来决定我们地球生态系统模型并进行解释。一个就是生物信息学,我们生物信息学当前也非常活跃,怎么样通过基因表达和运行的组织,来发现基因调控模型和解释。所以这个知识发现,我觉得对我们当前作为大数据的研究还是非常有指导的意义,我们当前处于这样的大数据时代。所以司马贺在20世纪70年代末、80年代就已经在开展通过19世纪大量的实验数据来进行知识的发现,他是在这方面我觉得作出了非常突出的贡献。


    司马贺对我们中国有非常深厚的感情,这是1988年我和慈云桂先生、徐家福先生等一起到东京参加日本的第五代计算机(FGCS)国际会议,日本出钱邀请司马贺做主题报告,但是司马贺在会上他的报告里面一个字都没有提到日本的技术,惟一提到的就是跟我们中国心理所的合作,他强调通过这样的示例学习对认知心理学和学习理论作出了重要贡献,强调我们中国在这方面,而且在教育当中起到很好的作用,所以可以看到司马贺先生对中国的感情是多么的深厚。


    今天我们缅怀前辈,重温司马贺创新之路,发扬他在人工智能方面的创新精神,努力发展智能科学技术,实现智能社会,为人类造福。


谢谢大家!

本文来源于"中国人工智能学会",原文发表时间"2016-06-20"
相关文章
|
6月前
|
人工智能 安全 Android开发
【专栏】在人工智能时代,Android和iOS两大移动操作系统巨头正加速融合与创新
【4月更文挑战第27天】在人工智能时代,Android和iOS两大移动操作系统巨头正加速融合与创新。Android以其开放性占据广阔市场,集成AI功能如语音助手;而iOS以其稳定性和生态优势,如Siri,提供卓越体验。两者在AI技术、应用场景上相互借鉴,拓展至医疗、教育等领域,并逐步打通生态系统。然而,技术竞争、数据隐私和标准不一是挑战,新市场需求、技术创新和产业合作则带来机遇。未来,二者将继续推动AI发展,为社会进步贡献力量。
100 4
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与创新的未来
在当今科技飞速发展的时代,人工智能已经成为了推动创新与变革的关键力量。本文将探讨人工智能技术在创新领域的应用,并探索其未来发展的可能性,以期为读者带来新的思考与启发。
39 0
|
4月前
|
机器学习/深度学习 人工智能 监控
人工智能浪潮中的伦理困境:如何平衡创新与责任?
随着人工智能技术的快速发展,其在改善人类生活的同时,也引发了一系列伦理问题。本文将探讨AI技术在医疗、司法和隐私保护等领域的应用所带来的伦理挑战,并讨论如何在促进技术创新的同时确保社会责任的承担。通过分析具体案例,文章旨在提供对于制定AI伦理指导原则的建议,以期达到技术发展与社会价值的和谐共存。
|
5月前
|
人工智能 前端开发 搜索推荐
人工智能(AI)在前端设计中的创新应用
人工智能(AI)在前端设计中的创新应用
138 4
|
5月前
|
机器学习/深度学习 存储 人工智能
人工智能在医疗健康领域的创新应用与挑战
人工智能在医疗健康领域的创新应用与挑战
67 2
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
|
6月前
|
机器学习/深度学习 人工智能 监控
探索人工智能在图像识别领域的创新应用
【5月更文挑战第25天】随着深度学习技术的飞速发展,人工智能(AI)在图像识别领域取得了重大进展。本文将深入探讨人工智能如何通过先进的算法和模型改进图像识别能力,并分析其在不同行业中的应用前景。我们将重点讨论卷积神经网络(CNN)与循环神经网络(RNN)的结合使用,以及生成对抗网络(GAN)在提高图像质量方面的作用。此外,文中还将提及数据增强、迁移学习等策略对提升模型泛化性能的重要性。
|
6月前
|
机器学习/深度学习 人工智能 算法
探索人工智能在图像识别领域的创新应用
【5月更文挑战第30天】 随着深度学习技术的飞速发展,人工智能(AI)在图像识别领域取得了革命性的进展。本文旨在探讨AI技术如何优化图像识别流程,提高识别精度,并分析其在多个行业中的实际应用。通过对比传统方法和最新的研究成果,我们展示了AI驱动的图像识别系统在处理速度、准确率和自动化水平方面的显著提升。此外,文章还将讨论当前面临的挑战和未来的发展趋势,为读者提供一个关于AI在图像识别领域内应用的全面视角。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能技术与创新发展
在当今快速发展的科技时代,人工智能技术已成为推动创新发展的关键驱动力之一。本文将探讨人工智能技术在创新领域的应用,并就其对社会、经济和人类生活的影响展开讨论。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
构建未来:人工智能在持续学习系统中的创新应用
【2月更文挑战第28天】 随着技术的不断进步,人工智能(AI)已成为推动现代技术创新的关键力量。特别是在机器学习领域,AI系统的能力不断增强,能够处理更复杂的任务并做出更加精准的决策。本文将探讨AI在持续学习系统中的应用,重点分析其在数据处理、模式识别和自适应学习机制方面的最新进展,并提出如何利用这些技术来设计更为高效和智能的教育工具,以促进个体和组织的知识积累与技能提升。
86 1