如何在Ubuntu 14.04 LTS安装网络爬虫工具:Scrapy-阿里云开发者社区

开发者社区> 开发与运维> 正文

如何在Ubuntu 14.04 LTS安装网络爬虫工具:Scrapy

简介: 如何在Ubuntu 14.04 LTS安装网络爬虫工具:Scrapy 这是一款提取网站数据的开源工具。Scrapy框架用Python开发而成,它使抓取工作又快又简单,且可扩展。我们已经在virtual box中创建一台虚拟机(VM)并且在上面安装了Ubuntu 14.04 LTS。

如何在Ubuntu 14.04 LTS安装网络爬虫工具:Scrapy

这是一款提取网站数据的开源工具。Scrapy框架用Python开发而成,它使抓取工作又快又简单,且可扩展。我们已经在virtual box中创建一台虚拟机(VM)并且在上面安装了Ubuntu 14.04 LTS。

安装 Scrapy

Scrapy依赖于Python、开发库和pip。Python最新的版本已经在Ubuntu上预装了。因此我们在安装Scrapy之前只需安装pip和python开发库就可以了。

pip是作为python包索引器easy_install的替代品,用于安装和管理Python包。pip包的安装可见图 1。


  1. sudo apt-get install python-pip

图:1 pip安装

图:1 pip安装

我们必须要用下面的命令安装python开发库。如果包没有安装那么就会在安装scrapy框架的时候报关于python.h头文件的错误。


  1. sudo apt-get install python-dev

图:2 Python 开发库

图:2 Python 开发库

scrapy框架既可从deb包安装也可以从源码安装。在图3中我们用pip(Python 包管理器)安装了deb包了。


  1. sudo pip install scrapy

图:3 Scrapy 安装

图:3 Scrapy 安装

图4中scrapy的成功安装需要一些时间。

图:4 成功安装Scrapy框架

图:4 成功安装Scrapy框架

使用scrapy框架提取数据

基础教程

我们将用scrapy从fatwallet.com上提取商店名称(卖卡的店)。首先,我们使用下面的命令新建一个scrapy项目“store name”, 见图5。


  1. $sudo scrapy startproject store_name

图:5 Scrapy框架新建项目

图:5 Scrapy框架新建项目

上面的命令在当前路径创建了一个“store_name”的目录。项目主目录下包含的文件/文件夹见图6。


  1. $sudo ls lR store_name

图:6 store_name项目的内容

图:6 store_name项目的内容

每个文件/文件夹的概要如下:

  • scrapy.cfg 是项目配置文件
  • store_name/ 主目录下的另一个文件夹。 这个目录包含了项目的python代码
  • store_name/items.py 包含了将由蜘蛛爬取的项目
  • store_name/pipelines.py 是管道文件
  • store_name/settings.py 是项目的配置文件
  • store_name/spiders/, 包含了用于爬取的蜘蛛

由于我们要从fatwallet.com上如提取店名,因此我们如下修改文件(LCTT 译注:这里没说明是哪个文件,译者认为应该是 items.py)。


  1. import scrapy
  2. class StoreNameItem(scrapy.Item):
  3. name = scrapy.Field() # 取出卡片商店的名称

之后我们要在项目的store_name/spiders/文件夹下写一个新的蜘蛛。蜘蛛是一个python类,它包含了下面几个必须的属性:

  1. 蜘蛛名 (name )
  2. 爬取起点url (start_urls)
  3. 包含了从响应中提取需要内容相应的正则表达式的解析方法。解析方法对爬虫而言很重要。

我们在storename/spiders/目录下创建了“storename.py”爬虫,并添加如下的代码来从fatwallet.com上提取店名。爬虫的输出写到文件(StoreName.txt)中,见图7。


  1. from scrapy.selector import Selector
  2. from scrapy.spider import BaseSpider
  3. from scrapy.http import Request
  4. from scrapy.http import FormRequest
  5. import re
  6. class StoreNameItem(BaseSpider):
  7. name = "storename"
  8. allowed_domains = ["fatwallet.com"]
  9. start_urls = ["http://fatwallet.com/cash-back-shopping/"]
  10. def parse(self,response):
  11. output = open('StoreName.txt','w')
  12. resp = Selector(response)
  13. tags = resp.xpath('//tr[@class="storeListRow"]|\
  14. //tr[@class="storeListRow even"]|\
  15. //tr[@class="storeListRow even last"]|\
  16. //tr[@class="storeListRow last"]').extract()
  17. for i in tags:
  18. i = i.encode('utf-8', 'ignore').strip()
  19. store_name = ''
  20. if re.search(r"class=\"storeListStoreName\">.*?<",i,re.I|re.S):
  21. store_name = re.search(r"class=\"storeListStoreName\">.*?<",i,re.I|re.S).group()
  22. store_name = re.search(r">.*?<",store_name,re.I|re.S).group()
  23. store_name = re.sub(r'>',"",re.sub(r'<',"",store_name,re.I))
  24. store_name = re.sub(r'&amp;',"&",re.sub(r'&amp;',"&",store_name,re.I))
  25. #print store_name
  26. output.write(store_name+""+"\n")

图:7 爬虫的输出

图:7 爬虫的输出

注意: 本教程的目的仅用于理解scrapy框架

----------------------------------------------------------------------------------------------------------------------------

原文发布时间:2015-03-21
本文来自云栖合作伙伴“linux中国”

版权声明:本文首发在云栖社区,遵循云栖社区版权声明:本文内容由互联网用户自发贡献,版权归用户作者所有,云栖社区不为本文内容承担相关法律责任。云栖社区已升级为阿里云开发者社区。如果您发现本文中有涉嫌抄袭的内容,欢迎发送邮件至:developer2020@service.aliyun.com 进行举报,并提供相关证据,一经查实,阿里云开发者社区将协助删除涉嫌侵权内容。

分享:
开发与运维
使用钉钉扫一扫加入圈子
+ 订阅

集结各类场景实战经验,助你开发运维畅行无忧

其他文章