【集合论】有序对 ( 有序对 | 有序三元组 | 有序 n 元祖 )

简介: 【集合论】有序对 ( 有序对 | 有序三元组 | 有序 n 元祖 )

文章目录

一、 有序对

二、 有序对性质的引理、定理

三、 有序三元组

四、 有序 n 元组性质定理





一、 有序对


有序对概念 :


< a , b > = { { a } , { a , b } } <a, b> = \{ \{ a \} , \{ a , b \} \}

<a,b>={{a},{a,b}}


其中 a aa 是第一个元素 , b bb 是第二个元素 ;


记做 < a , b > <a, b><a,b> , 也可以记做 ( a , b ) (a , b)(a,b)



理解 1 : a , b a, ba,b 是有顺序的 , 单个元素的集合中的元素是第一个元素 , 两个元素集合中的另一个元素是第二个元素 ;


理解 2 ( 推荐 ) : 第一个元素出现在每个子集合中 , 第二个元素只出现在一个子集合中 , 通过这种方式 , 保证了有序对的定义 , 一前一后两个元素 , 前后顺序不同 , 对应的有序对不同 ;



下面是相同的两个元素的不同的有序对 :


有序对 < a , b > = { { a } , { a , b } } <a, b> = \{ \{ a \} , \{ a , b \} \}<a,b>={{a},{a,b}}


有序对 < b , a > = { { b } , { a , b } } <b, a> = \{ \{ b \} , \{ a , b \} \}<b,a>={{b},{a,b}}






二、 有序对性质的引理、定理


1. 引理 1 : { x , a } = { x , b } \{ x , a \} = \{ x, b \}{x,a}={x,b} ⇔ \Leftrightarrow⇔ a = b a=ba=b


两个集合如果相等 , 当且仅当 a = b a = ba=b ;




2. 引理 2 : 若 A = B ≠ ∅ \mathscr{A} = \mathscr{B} \not= \varnothingA=B


=∅ , 则有


① ⋃ A = ⋃ B \bigcup \mathscr{A} = \bigcup \mathscr{B}⋃A=⋃B


② ⋂ A = ⋂ B \bigcap \mathscr{A} = \bigcap \mathscr{B}⋂A=⋂B



说明 : 集族 A \mathscr{A}A 与 集族 B \mathscr{B}B 相等 , 并且 两个集族都不为空 , 那么 两个集族的广义交相等 , 两个集族的广义并也相等 ;




3. 定理 : < a , b > = < c , d > <a,b> = <c, d><a,b>=<c,d> ⇔ \Leftrightarrow⇔ a = c ∧ b = d a = c \land b = da=c∧b=d


通过上述定理 , 说明有序对是有顺序的 ;




4. 推论 : a ≠ b a \not= ba


=b ⇒ \Rightarrow⇒ < a , b > ≠ < b , a > <a,b> \not= <b, a><a,b>


=<b,a>






三、 有序三元组


有序三元组 :


< a , b , c > = < < a , b > , c > <a, b, c> = < <a, b> , c >

<a,b,c>=<<a,b>,c>


有序三元组是有序二元组在前 , 第三个元素在后 , 组成的有序对 ;



有序 n nn 元祖 : n ≥ 2 n \geq 2n≥2


< a 1 , a 2 , ⋯   , a n > = < < a 1 , ⋯   , a n − 1 > , a n > <a_1, a_2, \cdots , a_n> = < <a_1, \cdots , a_{n-1}> , a_n >

<a

1


,a

2


,⋯,a

n


>=<<a

1


,⋯,a

n−1


>,a

n


>


先拿前 n − 1 n-1n−1 个元素组成一个有序 n − 1 n-1n−1 元祖 , 该 n − 1 n-1n−1 元祖在前 , 然后跟第 n nn 个元素 a n a_na

n


 在后 , 构成有序对 ;






四、 有序 n 元组性质定理


有序 n nn 元组性质定理 :


< a 1 , a 2 , ⋯   , a n > = < b 1 , b 2 , ⋯   , b n > <a_1, a_2, \cdots , a_n> = <b_1, b_2, \cdots , b_n><a

1


,a

2


,⋯,a

n


>=<b

1


,b

2


,⋯,b

n


> ⇔ \Leftrightarrow⇔ a i = b i , i = 1 , 2 , ⋯   , n a_i = b_i , i = 1, 2, \cdots , na

i


=b

i


,i=1,2,⋯,n


说明 : 两个有序 n nn 元祖 , 每个对应位置上的元素两两相同 , 两个 n nn 元组有序对才相等 ;


目录
相关文章
|
5月前
|
算法 C语言
详解用二分法查找有序数据中的指定数字
详解用二分法查找有序数据中的指定数字
42 1
|
5月前
|
算法 编译器
【归并排序】两个有序序列的合并
【归并排序】两个有序序列的合并
|
6月前
|
算法 测试技术 Serverless
【二分查找】【C++算法】378. 有序矩阵中第 K 小的元素
【二分查找】【C++算法】378. 有序矩阵中第 K 小的元素
有序序列合并
有序序列合并
63 0
|
6月前
leetcode-378:有序矩阵中第 K 小的元素
leetcode-378:有序矩阵中第 K 小的元素
38 0
|
11月前
|
算法 测试技术 C#
C++二分查找算法:有序矩阵中的第 k 个最小数组和(二)
C++二分查找算法:有序矩阵中的第 k 个最小数组和
|
11月前
|
算法 测试技术 C++
C++二分查找算法:有序矩阵中的第 k 个最小数组和(一)
C++二分查找算法:有序矩阵中的第 k 个最小数组和
|
人工智能
有序序列中插入一个整数
有序序列中插入一个整数
82 0
7-234 两个有序序列的中位数
7-234 两个有序序列的中位数
114 0
牛客网——有序序列合并
牛客网——有序序列合并
102 0