八叉树建立地图并实现路径规划导航(下)

本文涉及的产品
资源编排,不限时长
简介: 八叉树建立地图并实现路径规划导航(下)

五、源码阅读笔记


同时笔者整理了以下这个建图包的关键流程,只有 2 个关键的函数也不是很复杂。


第一步是订阅点云的回调:


20210119210746863.png


第二步是插入单帧点云构建八叉树,这里就不详细介绍过程了,因为涉及到八叉树库 octomap 的更新原理:


20210119210803229.png


以下是我建图过程的 launch:


/

在这里插入代码片<launch>
  <node pkg="octomap_server" type="octomap_server_node" name="octomap_server">
    <!-- resolution in meters per pixel -->
    <param name = "resolution" value = "0.15" />
    <!-- name of the fixed frame, needs to be "/map" for SLAM -->
    <!-- 静态全局地图的 frame_id,但在增量式构建地图时,需要提供输入的点云帧和静态全局帧之间的 TF 变换 -->
    <param name = "frame_id" type = "string" value = "camera_init" />
    <!-- set min to speed up! -->
    <param name = "sensor_model/max_range" value = "15.0" />
    <!-- 机器人坐标系 base_link,滤除地面需要该 frame -->
    <!-- <param name = "base_frame_id" type = "string" value = "base_link" /> -->
    <!-- filter ground plane, distance value should be big! 项目并不需要滤除地面 -->
  <!-- <param name = "filter_ground" type = "bool" value = "true" /> -->
    <!-- <param name = "ground_filter/distance" type = "double" value = "1.0" /> -->
    <!-- 分割地面的 Z 轴阈值 value 值 -->
  <!-- <param name = "ground_filter/plane_distance" type = "double" value = "0.3" /> -->
    <!-- 直通滤波的 Z 轴范围,保留 [-1.0, 10.0] 范围内的点 -->
    <!-- <param name = "pointcloud_max_z" type = "double" value = "100.0" /> -->
    <!-- <param name = "pointcloud_min_z" type = "double" value = "-1.0" /> -->
    <!-- <param name = "filter_speckles" type = "bool" value = "true" /> -->
    <param name = "height_map" value = "false" />
    <param name = "colored_map" value = "true" />
    <!-- 增加了半径滤波器 -->
    <param name = "outrem_radius" type = "double" value = "1.0" />
    <param name = "outrem_neighbors" type = "int" value = "10" />
    <!-- when building map, set to false to speed up!!! -->
    <param name = "latch" value = "false" /> 
    <!-- topic from where pointcloud2 messages are subscribed -->
    <!-- 要订阅的点云主题名称 /pointcloud/output -->
    <!-- 这句话的意思是把当前节点订阅的主题名称从 cloud_in 变为 /pointcloud/output -->
    <remap from = "/cloud_in" to = "/fusion_cloud" />
  </node>
</launch>


六、路径规划


2021011921325334.png


这里给一个链接:https://github.com/Quitino/IndoorMapping,该作者实现了基于ORB-SLAM生成三维密集点云,并使用OctoMap构建室内导航地图。也意味着我们可以在此基础上加入轨迹规划算法实现基于OBR-SLAM的室内规划导航。


具体代码可以参照:https://blog.csdn.net/lovely_yoshino/article/details/105272602中的3D-RRT路径规划方法实现。


七:介绍三维A*在栅格地图中的使用


AngeloG 博文中写了三维 A的相关matlab仿真。为了便于在ROS中对A算法进行开发,这里也提供一下之前我学习的A*算法


#include "Astar_searcher.h"
using namespace std;
using namespace Eigen;
void AstarPathFinder::initGridMap(double _resolution, Vector3d global_xyz_l, Vector3d global_xyz_u, int max_x_id,
                                  int max_y_id, int max_z_id)
{
  gl_xl = global_xyz_l(0);
  gl_yl = global_xyz_l(1);
  gl_zl = global_xyz_l(2);
  gl_xu = global_xyz_u(0);
  gl_yu = global_xyz_u(1);
  gl_zu = global_xyz_u(2);
  GLX_SIZE = max_x_id;
  GLY_SIZE = max_y_id;
  GLZ_SIZE = max_z_id;
  GLYZ_SIZE = GLY_SIZE * GLZ_SIZE;
  GLXYZ_SIZE = GLX_SIZE * GLYZ_SIZE;
  resolution = _resolution;
  inv_resolution = 1.0 / _resolution;
  data = new uint8_t[GLXYZ_SIZE];
  memset(data, 0, GLXYZ_SIZE * sizeof(uint8_t));
  GridNodeMap = new GridNodePtr **[GLX_SIZE];
  for (int i = 0; i < GLX_SIZE; i++)
  {
    GridNodeMap[i] = new GridNodePtr *[GLY_SIZE];
    for (int j = 0; j < GLY_SIZE; j++)
    {
      GridNodeMap[i][j] = new GridNodePtr[GLZ_SIZE];
      for (int k = 0; k < GLZ_SIZE; k++)
      {
        Vector3i tmpIdx(i, j, k);
        Vector3d pos = gridIndex2coord(tmpIdx);
        GridNodeMap[i][j][k] = new GridNode(tmpIdx, pos);
      }
    }
  }
}
void AstarPathFinder::resetGrid(GridNodePtr ptr)
{
  ptr->id = 0;
  ptr->cameFrom = NULL;
  ptr->gScore = inf;
  ptr->fScore = inf;
}
void AstarPathFinder::resetUsedGrids()
{
  for (int i = 0; i < GLX_SIZE; i++)
    for (int j = 0; j < GLY_SIZE; j++)
      for (int k = 0; k < GLZ_SIZE; k++)
        resetGrid(GridNodeMap[i][j][k]);
}
void AstarPathFinder::setObs(const double coord_x, const double coord_y, const double coord_z)
{
  if (coord_x < gl_xl || coord_y < gl_yl || coord_z < gl_zl || coord_x >= gl_xu || coord_y >= gl_yu || coord_z >= gl_zu)
    return;
  int idx_x = static_cast<int>((coord_x - gl_xl) * inv_resolution);
  int idx_y = static_cast<int>((coord_y - gl_yl) * inv_resolution);
  int idx_z = static_cast<int>((coord_z - gl_zl) * inv_resolution);
  data[idx_x * GLYZ_SIZE + idx_y * GLZ_SIZE + idx_z] = 1;
}
vector<Vector3d> AstarPathFinder::getVisitedNodes()
{
  vector<Vector3d> visited_nodes;
  for (int i = 0; i < GLX_SIZE; i++)
    for (int j = 0; j < GLY_SIZE; j++)
      for (int k = 0; k < GLZ_SIZE; k++)
      {
        // if(GridNodeMap[i][j][k]->id != 0) // visualize all nodes in open and
        // close list
        if (GridNodeMap[i][j][k]->id == -1)  // visualize nodes in close list only
          visited_nodes.push_back(GridNodeMap[i][j][k]->coord);
      }
  ROS_WARN("visited_nodes size : %d", visited_nodes.size());
  return visited_nodes;
}
Vector3d AstarPathFinder::gridIndex2coord(const Vector3i &index)
{
  Vector3d pt;
  pt(0) = ((double)index(0) + 0.5) * resolution + gl_xl;
  pt(1) = ((double)index(1) + 0.5) * resolution + gl_yl;
  pt(2) = ((double)index(2) + 0.5) * resolution + gl_zl;
  return pt;
}
Vector3i AstarPathFinder::coord2gridIndex(const Vector3d &pt)
{
  Vector3i idx;
  idx << min(max(int((pt(0) - gl_xl) * inv_resolution), 0), GLX_SIZE - 1),
      min(max(int((pt(1) - gl_yl) * inv_resolution), 0), GLY_SIZE - 1),
      min(max(int((pt(2) - gl_zl) * inv_resolution), 0), GLZ_SIZE - 1);
  return idx;
}
Eigen::Vector3d AstarPathFinder::coordRounding(const Eigen::Vector3d &coord)
{
  return gridIndex2coord(coord2gridIndex(coord));
}
inline bool AstarPathFinder::isOccupied(const Eigen::Vector3i &index) const
{
  return isOccupied(index(0), index(1), index(2));
}
inline bool AstarPathFinder::isFree(const Eigen::Vector3i &index) const
{
  return isFree(index(0), index(1), index(2));
}
inline bool AstarPathFinder::isOccupied(const int &idx_x, const int &idx_y, const int &idx_z) const
{
  return (idx_x >= 0 && idx_x < GLX_SIZE && idx_y >= 0 && idx_y < GLY_SIZE && idx_z >= 0 && idx_z < GLZ_SIZE &&
          (data[idx_x * GLYZ_SIZE + idx_y * GLZ_SIZE + idx_z] == 1));
}
inline bool AstarPathFinder::isFree(const int &idx_x, const int &idx_y, const int &idx_z) const
{
  return (idx_x >= 0 && idx_x < GLX_SIZE && idx_y >= 0 && idx_y < GLY_SIZE && idx_z >= 0 && idx_z < GLZ_SIZE &&
          (data[idx_x * GLYZ_SIZE + idx_y * GLZ_SIZE + idx_z] < 1));
}
inline void AstarPathFinder::AstarGetSucc(GridNodePtr currentPtr, vector<GridNodePtr> &neighborPtrSets,
                                          vector<double> &edgeCostSets)
{
  neighborPtrSets.clear();
  edgeCostSets.clear();
  /*
  STEP 4: finish AstarPathFinder::AstarGetSucc yourself
  please write your code below
  */
  // get all neighbours of current node, calculate all the costs, and then save to the point.
  // should be a 3D search, maxumin 26 nodes, but need to remove the obstacles and boundary
  Vector3i neighborIdx;
  for (int dx = -1; dx < 2; dx++)
  {
    for (int dy = -1; dy < 2; dy++)
    {
      for (int dz = -1; dz < 2; dz++)
      {
        if (dx == 0 && dy == 0 && dz == 0)
          continue;
        neighborIdx(0) = (currentPtr->index)(0) + dx;
        neighborIdx(1) = (currentPtr->index)(1) + dy;
        neighborIdx(2) = (currentPtr->index)(2) + dz;
        if (neighborIdx(0) < 0 || neighborIdx(0) >= GLX_SIZE || neighborIdx(1) < 0 || neighborIdx(1) >= GLY_SIZE ||
            neighborIdx(2) < 0 || neighborIdx(2) >= GLZ_SIZE)
          continue;
        neighborPtrSets.push_back(GridNodeMap[neighborIdx(0)][neighborIdx(1)][neighborIdx(2)]);
        edgeCostSets.push_back(sqrt(dx * dx + dy * dy + dz * dz));
      }
    }
  }
}
double AstarPathFinder::getHeu(GridNodePtr node1, GridNodePtr node2)
{
  /*STEP 1
  choose possible heuristic function you want
  Manhattan, Euclidean, Diagonal, or 0 (Dijkstra)
  Remember tie_breaker learned in lecture, add it here ?
  */
  // ROS_INFO("[node] calcute Heu");
  // return getDiagHeu(node1, node2);
  double tie_breaker = 1 + 1 / 1000;
  return tie_breaker * getDiagHeu(node1, node2);
}
double AstarPathFinder::getEuclHeu(GridNodePtr node1, GridNodePtr node2)
{
  // calculate distance at each dimention
  double dx = node1->index(0) - node2->index(0);
  double dy = node1->index(1) - node2->index(1);
  double dz = node1->index(2) - node2->index(2);
  double result1 = sqrt(dx * dx + dy * dy + dz * dz);
  // double result2 = (node2->index - node1->index).norm();
  // cout.setf(ios::fixed);
  // cout << "norm1 = " << setprecision(4) << result1 << endl;
  // cout << "diff = " << (node2->index - node1->index) << endl;
  // cout << "norm2 = " << setprecision(4) << result2 << endl;
  return result1;
}
double AstarPathFinder::getDiagHeu(GridNodePtr node1, GridNodePtr node2)
{
  double dx = abs(node1->index(0) - node2->index(0));
  double dy = abs(node1->index(1) - node2->index(1));
  double dz = abs(node1->index(2) - node2->index(2));
  double h = 0.0;
  int diag = min(min(dx, dy), dz);
  dx -= diag;
  dy -= diag;
  dz -= diag;
  if (dx == 0)
    h = 1.0 * sqrt(3.0) * diag + sqrt(2.0) * min(dy, dz) + 1.0 * abs(dy - dz);
  if (dy == 0)
    h = 1.0 * sqrt(3.0) * diag + sqrt(2.0) * min(dx, dz) + 1.0 * abs(dx - dz);
  if (dz == 0)
    h = 1.0 * sqrt(3.0) * diag + sqrt(2.0) * min(dx, dy) + 1.0 * abs(dx - dy);
  return h;
}
double AstarPathFinder::getManhHeu(GridNodePtr node1, GridNodePtr node2)
{
  double dx = abs(node1->index(0) - node2->index(0));
  double dy = abs(node1->index(1) - node2->index(1));
  double dz = abs(node1->index(2) - node2->index(2));
  return dx + dy + dz;
}
void AstarPathFinder::AstarGraphSearch(Vector3d start_pt, Vector3d end_pt)
{
  ros::Time time_1 = ros::Time::now();
  // index of start_point and end_point
  Vector3i start_idx = coord2gridIndex(start_pt);  // what is coord2gridIndex mean?
  Vector3i end_idx = coord2gridIndex(end_pt);
  goalIdx = end_idx;
  // position of start_point and end_point
  start_pt = gridIndex2coord(start_idx);
  end_pt = gridIndex2coord(end_idx);
  // Initialize the pointers of struct GridNode which represent start node and
  // goal node
  GridNodePtr startPtr = new GridNode(start_idx, start_pt);
  GridNodePtr endPtr = new GridNode(end_idx, end_pt);
  // openSet is the open_list implemented through multimap in STL library
  openSet.clear();
  // currentPtr represents the node with lowest f(n) in the open_list
  GridNodePtr currentPtr = NULL;
  GridNodePtr neighborPtr = NULL;
  // put start node in open set
  startPtr->gScore = 0;
  startPtr->fScore = getHeu(startPtr, endPtr);  // f = h + g = h + 0
  startPtr->id = 1;
  startPtr->coord = start_pt;
  openSet.insert(make_pair(startPtr->fScore, startPtr));
  // startPtr->cameFrom = startPtr;
  /**
  STEP 2: some else preparatory works which should be done before while loop
  please write your code below, neighbour of start point
  **/
  double tentative_gScore;
  vector<GridNodePtr> neighborPtrSets;
  vector<double> edgeCostSets;
  // this is the main loop
  while (!openSet.empty())
  {
    /*
    step 3: Remove the node with lowest cost function from open set to closed
    set, please write your code below
    IMPORTANT NOTE!!!
    This part you should use the C++ STL: multimap,
    more details can be find in Homework description
    */
    // get the min f node from open set to current
    currentPtr = openSet.begin()->second;
    // if the current node is the goal
    if (currentPtr->index == goalIdx)
    {
      ros::Time time_2 = ros::Time::now();
      terminatePtr = currentPtr;
      ROS_WARN("[A*]{sucess}  Time in A*  is %f ms, path cost is %f m", (time_2 - time_1).toSec() * 1000.0,
               currentPtr->gScore * resolution);
      // cout << "final point" << endl << terminatePtr->coord << endl;
      // cout << "came frome" << endl << terminatePtr->cameFrom->coord << endl;
      return;
    }
    // put to close, and erase it
    openSet.erase(openSet.begin());
    currentPtr->id = -1;
    // STEP 4: finish AstarPathFinder::AstarGetSucc, get the succetion
    AstarGetSucc(currentPtr, neighborPtrSets, edgeCostSets);
    /***
    STEP 5:  For all unexpanded neigbors "m" of node "n", please finish this for
    loop please write your code below
    **/
    for (int i = 0; i < (int)neighborPtrSets.size(); i++)
    {
      /*
      Judge if the neigbors have been expanded,please write your code below
      IMPORTANT NOTE!!!
      neighborPtrSets[i]->id = -1 : in closed set
      neighborPtrSets[i]->id = 1 : in open set
      */
      neighborPtr = neighborPtrSets[i];
      if (isOccupied(neighborPtr->index) || neighborPtr->id == -1)
        continue;
      double edge_cost = edgeCostSets[i];
      tentative_gScore = currentPtr->gScore + edge_cost;
      if (neighborPtr->id != 1)
      {  // discover a new node, which is not in the open set
        /*
        STEP 6:  As for a new node, do what you need do ,and then put neighbor
        in open set and record it,please write your code below
        */
        // insert to open set
        openSet.insert(make_pair(startPtr->fScore, neighborPtrSets[i]));
        neighborPtr->id = 1;
        neighborPtr->cameFrom = currentPtr;
        neighborPtr->gScore = tentative_gScore;
        neighborPtr->fScore = neighborPtr->gScore + getHeu(neighborPtr, endPtr);
        neighborPtr->nodeMapIt =
            openSet.insert(make_pair(neighborPtr->fScore, neighborPtr));  // put neighbor in open set and record it.
        continue;
      }
      else if (neighborPtr->gScore >= tentative_gScore)  // compare original f and new f from current
      // this node is in open set and need to judge if it needs to update,
      // he "0" should be deleted when you are coding
      {
        /*
        STEP 7:  As for a node in open set, update it , maintain the openset,
        and then put neighbor in open set and record it please write your code below
        */
        neighborPtr->cameFrom = currentPtr;
        neighborPtr->gScore = tentative_gScore;
        neighborPtr->fScore = tentative_gScore + getHeu(neighborPtr, endPtr);
        openSet.erase(neighborPtr->nodeMapIt);
        neighborPtr->nodeMapIt = openSet.insert(make_pair(neighborPtr->fScore, neighborPtr));
        // if change its parents, update the expanding direction
        for (int i = 0; i < 3; i++)
        {
          neighborPtr->dir(i) = neighborPtr->index(i) - currentPtr->index(i);
          if (neighborPtr->dir(i) != 0)
            neighborPtr->dir(i) /= abs(neighborPtr->dir(i));
        }
      }
    }
  }
  // if search fails
  ros::Time time_2 = ros::Time::now();
  if ((time_2 - time_1).toSec() > 0.1)
    ROS_WARN("Time consume in Astar path finding is %f", (time_2 - time_1).toSec());
}
vector<Vector3d> AstarPathFinder::getPath()
{
  vector<Vector3d> path;
  vector<GridNodePtr> gridPath;
  /*
  STEP 8:  trace back from the curretnt nodePtr to get all nodes along the path
  please write your code below
  */
  gridPath.push_back(terminatePtr);
  while (terminatePtr->cameFrom != NULL)
  {
    terminatePtr = terminatePtr->cameFrom;
    gridPath.push_back(terminatePtr);
  }
  for (auto ptr : gridPath)
    path.push_back(ptr->coord);
  reverse(path.begin(), path.end());
  return path;
}
相关实践学习
使用ROS创建VPC和VSwitch
本场景主要介绍如何利用阿里云资源编排服务,定义资源编排模板,实现自动化创建阿里云专有网络和交换机。
阿里云资源编排ROS使用教程
资源编排(Resource Orchestration)是一种简单易用的云计算资源管理和自动化运维服务。用户通过模板描述多个云计算资源的依赖关系、配置等,并自动完成所有资源的创建和配置,以达到自动化部署、运维等目的。编排模板同时也是一种标准化的资源和应用交付方式,并且可以随时编辑修改,使基础设施即代码(Infrastructure as Code)成为可能。 产品详情:https://www.aliyun.com/product/ros/
相关文章
|
算法 定位技术
Threejs中使用A*算法寻路导航,Threejs室内室外地图导航
Threejs中使用A*算法寻路导航,Threejs室内室外地图导航
1161 0
|
2月前
|
数据采集 监控 安全
厂区地图导航制作:GIS技术与路径导航算法融合
在智能化、数字化时代,GIS技术为厂区的运营管理带来了革命性变化。本文探讨了如何利用GIS技术,通过数据采集、地图绘制、路径规划、位置定位和信息查询等功能,打造高效、精准的智能厂区地图导航系统,提升企业的竞争力和管理水平。
87 0
厂区地图导航制作:GIS技术与路径导航算法融合
|
4月前
|
定位技术
使用地图写路径规划
使用地图写路径规划
64 0
|
传感器 存储 编解码
八叉树建立地图并实现路径规划导航(上)
八叉树建立地图并实现路径规划导航(上)
1630 0
八叉树建立地图并实现路径规划导航(上)
|
机器学习/深度学习 传感器 算法
【机器人栅格地图】基于强化学习Q-Learing实现栅格地图路径规划附matlab代码
【机器人栅格地图】基于强化学习Q-Learing实现栅格地图路径规划附matlab代码
|
传感器 机器学习/深度学习 监控
【无人机控制】基于PRISM模型实现无人机目标搜索及避碰附matlab代码
【无人机控制】基于PRISM模型实现无人机目标搜索及避碰附matlab代码
|
机器学习/深度学习 传感器 编解码
【路径规划】基于A星算法结合floyd和动态窗口法实现机器人栅格地图路径规划附matlab代码
【路径规划】基于A星算法结合floyd和动态窗口法实现机器人栅格地图路径规划附matlab代码
|
机器学习/深度学习 传感器 人工智能
【栅格地图路径规划】基于D星和D星_Lite算法实现机器人栅格地图路径规划附matlab代码
【栅格地图路径规划】基于D星和D星_Lite算法实现机器人栅格地图路径规划附matlab代码
|
机器学习/深度学习 传感器 算法
【机器人栅格地图】基于双向A星算法实现栅格地图机器人动态路径规划附matlab代码
【机器人栅格地图】基于双向A星算法实现栅格地图机器人动态路径规划附matlab代码
|
机器学习/深度学习 传感器 算法
【栅格地图路径规划】基于动态衡量启发式A星算法实现机器人栅格地图路径规划附matlab代码
【栅格地图路径规划】基于动态衡量启发式A星算法实现机器人栅格地图路径规划附matlab代码