Java集合源码解析-ConcurrentHashMap(JDK8)(上)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: Java集合源码解析-ConcurrentHashMap(JDK8)

为并发而生的 ConcurrentHashMap

数据结构


Java 7为实现并发访问,引入了Segment这一结构,实现了分段锁,理论上最大并发度与Segment个数相等。


Java 8取消了基于 Segment 的分段锁思想,改用CAS + synchronized 控制并发操作,在某些方面提升了性能。并且追随 1.8 版本的 HashMap 底层实现,使用数组+链表+红黑树进行数据存储。


image.png


和 HashMap 中的语义一样,代表整个哈希表。在第一次插入时才懒加载初始化。大小永远是 2 的次幂。被迭代器直接访问。


image.png


一个连接表,用于哈希表扩容,扩容完成后会被重置为 null


image.png


保存着整个哈希表中存储的所有的结点的个数总和,类似于 HashMap 的 size 属性。主要用于当没有线程竞争时使用,也会作为哈希表初始化过程中的反馈。通过CAS 更新。

image.png


这是一个重要的属性,无论是初始化哈希表,还是扩容 rehash,都需要该依赖。有如下取值:

  • >0:相当于 HashMap 中的 threshold,表示阈值
  • 0:默认值
  • -1:代表哈希表正在进行初始化
  • <-1:代表有多个线程正在进行扩容


image.png


构造函数的实现也和HashMap类似


image.png



若传入 32,实际大小 64。即最接近1.5n+1的 2的次幂。因为如果你想存入 15 个元素,那么 16 是存不下的,需要扩容,所以直接给你初始化为 32 的容量。


image.png



寻址方式

同样是通过Key的哈希值与数组长度取模确定该Key在数组中的索引;

同样为了避免不太好的Key的hashCode设计,它通过如下方法计算得到Key的最终哈希值.

// usable bits of normal node hash
static final int HASH_BITS = 0x7fffffff;

不同的是,Java 8的ConcurrentHashMap作者认为引入红黑树后,即使哈希冲突比较严重,寻址效率也足够高,所以作者并未在哈希值的计算上做过多设计,只是将Key的hashCode值与其高16位作异或并保证最高位为0(从而保证最终结果为正整数)


image.png



8.3 同步方式

对于put操作,如果Key对应的数组元素为null,则通过CAS操作将其设置为当前值;

如果Key对应的数组元素(也即链表表头或者树的根元素)不为null,则对该元素使用synchronized关键字申请锁,然后进行操作;

如果该put操作使得当前链表长度超过一定阈值,则将该链表转换为树,从而提高寻址效率.


对于读操作,由于数组被volatile修饰,因此不用担心数组的可见性问题;

同时每个元素是一个Node实例(Java 7中每个元素是一个HashEntry),它的Key值和hash值都由final修饰,不可变更,无须关心它们被修改后的可见性问题;

而其Value及对下一个元素的引用由volatile修饰,可见性也有保障.


8.4 操作


put方法和remove方法都会通过addCount方法维护Map的size;

size方法通过sumCount获取由addCount方法维护的Map的size.


下面我们主要来分析下 ConcurrentHashMap 的一个核心方法 put,我们也会一并解决掉该方法中涉及到的扩容、辅助扩容,初始化哈希表等方法。



8.4.1 put

HashMap多线程并发添加元素会导致数据丢失等并发问题,那么 ConcurrentHashMap 又是如何做到并发添加的呢?

final V putVal(K key, V value, boolean onlyIfAbsent) {
    //对传入的参数进行合法性判断
    if (key == null || value == null) throw new NullPointerException();
    //计算键所对应的 hash 值
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        //如果哈希表还未初始化,那么初始化它
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        //根据键的 hash 值找到哈希数组相应的索引位置
        //如果为空,那么以CAS无锁式向该位置添加一个节点
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   
        }

这里需要详细说明的只有initTable 方法:初始化哈希表,它同时只允许一个线程进行初始化操作。

/**
  * Initializes table, using the size recorded in sizeCtl.
  */
private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    // 如果表为空才进行初始化操作
    while ((tab = table) == null || tab.length == 0) {
        // sizeCtl 小于零说明已经有线程正在进行初始化操作
        // 当前线程应该放弃 CPU 的使用
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
        // 否则说明尚未有线程对表进行初始化,那么本线程就来做这个工作
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            //保险起见,再次判断下表是否为空
            try {
                if ((tab = table) == null || tab.length == 0) {
                    //至此, sc 大于零说明容量已经初始化了,否则使用默认容量,其他线程再也无法初始化!!!
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    //根据容量构建数组
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    //计算阈值,等效于 n*0.75
                    sc = n - (n >>> 2);
                }
            } finally {
                //设置阈值
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}
目录
相关文章
|
3天前
|
存储 缓存 Java
Java 并发编程——volatile 关键字解析
本文介绍了Java线程中的`volatile`关键字及其与`synchronized`锁的区别。`volatile`保证了变量的可见性和一定的有序性,但不能保证原子性。它通过内存屏障实现,避免指令重排序,确保线程间数据一致。相比`synchronized`,`volatile`性能更优,适用于简单状态标记和某些特定场景,如单例模式中的双重检查锁定。文中还解释了Java内存模型的基本概念,包括主内存、工作内存及并发编程中的原子性、可见性和有序性。
Java 并发编程——volatile 关键字解析
|
1天前
|
Java 数据库连接 Spring
反射-----浅解析(Java)
在java中,我们可以通过反射机制,知道任何一个类的成员变量(成员属性)和成员方法,也可以堆任何一个对象,调用这个对象的任何属性和方法,更进一步我们还可以修改部分信息和。
|
25天前
|
Java 编译器
Java 泛型详细解析
本文将带你详细解析 Java 泛型,了解泛型的原理、常见的使用方法以及泛型的局限性,让你对泛型有更深入的了解。
39 2
Java 泛型详细解析
|
13天前
|
存储 缓存 安全
Java 集合江湖:底层数据结构的大揭秘!
小米是一位热爱技术分享的程序员,本文详细解析了Java面试中常见的List、Set、Map的区别。不仅介绍了它们的基本特性和实现类,还深入探讨了各自的使用场景和面试技巧,帮助读者更好地理解和应对相关问题。
34 5
|
26天前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
53 12
|
23天前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
23天前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
25天前
|
Java 数据库连接 开发者
Java中的异常处理机制:深入解析与最佳实践####
本文旨在为Java开发者提供一份关于异常处理机制的全面指南,从基础概念到高级技巧,涵盖try-catch结构、自定义异常、异常链分析以及最佳实践策略。不同于传统的摘要概述,本文将以一个实际项目案例为线索,逐步揭示如何高效地管理运行时错误,提升代码的健壮性和可维护性。通过对比常见误区与优化方案,读者将获得编写更加健壮Java应用程序的实用知识。 --- ####
|
26天前
|
存储 缓存 安全
Java 集合框架优化:从基础到高级应用
《Java集合框架优化:从基础到高级应用》深入解析Java集合框架的核心原理与优化技巧,涵盖列表、集合、映射等常用数据结构,结合实际案例,指导开发者高效使用和优化Java集合。
38 4
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
76 2