企业利用所有数据必须克服的五大挑战

简介: 企业利用所有数据必须克服的五大挑战

如今的组织知道他们需要充分有效地利用所有的数据,这包括日益增长的通信数字化,以及从灯泡到智能手机的所有数据。他们也知道,必须捕获各种各样的数据,以便通过能够访问的方式存储数据,并根据业务快速变化的需求查询数据。他们也知道,他们无法忍受刻板的、预先安排好的模式。然而他们发现,这说起来容易做起来难。


那么是什么妨碍了他们实施?有很多事情,而组织必须克服的五大挑战是为了充分利用其数据以及合作伙伴的数据和其他外部数据源。


(1)无法使用多种数据类型和格式。如今的数据有各种格式,规模和形式,必须实时处理和分析。这包括不适合传统关系数据库系统的行和列的数据。更重要的是,这些不同的形式和类型的数据需要无缝地一起使用。丰富的结构化数据,图形数据,地理空间数据和非结构化数据可能都被视为单个查询或事务。


(2)基于传统系统的创新步伐缓慢。如今,技术和业务需求几乎每天都在变化,组织需要进行创新,以保持竞争力和合规性。许多公司却几乎无法处理他们手头上的数据,更不用说未来会发生什么,例如物联网生成的数据。在创新方面进行投资时,他们常常感到沮丧,因为他们需要处理拥有组织的大量数据资产的传统系统,这些系统将成为减缓其进展以及提高有效竞争能力的阻碍。


(3)企业数据仓库的扩散。各种数据的快速增长和企业为客户提供的服务数量的增长,在造成了企业中数据孤岛的扩散。为了更好地服务于客户、监管者和他们自己,企业需要对客户、产品等业务对象创建360度的视图。但是,创建这种整体景观是一项艰巨而耗资巨大的任务。一直以来,企业正在建立更多的数据孤岛。更糟糕的是,数据质量和这些观点的治理常常是事后的结果,甚至会导致监管处罚。


(4)ETL和模式优先系统的使用。关系数据库实际上是大多数组织中存储数据的标准。一旦填充了关系模式,使用SQL进行查询就很简单。这听起来不错,但这是一个大问题,但是组织必须创建查询将被发布的模式。整合所有现有的模式(可能是主机数据和文本内容)需要在业务部门,主题专家和实施者之间进行大量的时间和协调。然后,一旦模型被各利益相关者最终确定,必须将数据从源系统中提取,转化为适合新的模式,然后加载到新的称之为ETL过程(即数据抽取、转换、装载的过程)。这些过程不需要太长时间(平均6-18个月)。而且,它永远不会结束。数据源发生变化。添加新的来源。提出了不同的问题。ETL一直在接受,而不是给予。


(5)背景缺失。也许当今组织最大的问题是认为他们知道他们不知道的东西。没有背景的数据是无用的。这些数据意味着什么?它与其他数据有什么关系?数据的出处是什么?在什么情况下,可以和谁分享?在大多数情况下,这些问题的答案不会在数据库中捕获。它可能在开发人员的头脑中,或者设计文档中,或者ETL脚本里,或者更糟糕的是在所有的这些地方中,但不是一致的。传统数据库并不侧重于存储,管理和查询元数据,而典型的ETL流程通常会将此信息丢弃在本地。放弃背景意味着放弃从数据中获得的最大价值。


那么组织需要做什么呢?越来越多的组织转向多模型数据库。使用多模型数据库,他们可以捕获数据的背景并将其与数据进行存储,从而提供最大的数据敏捷性和可审计性。并且在将来防范数据库系统对任何新类型的数据,转移数据范例或监管要求,不可避免地出现偏移。


考虑采用多模型数据库平台的公司应该寻求:


•多结构的本地存储(结构感知)


•按原样加载数据的能力(在加载数据之前不需要模式)


•能够有效地对这些不同的模型进行索引


•能够无缝地使用所有模型,并进行组合


•企业级安全性和可用性


当然,数据库技术的转变并不轻松,许多IT专业人员在整个职业生涯只专注一种或几种技术。 但是,如果组织有时间确保他们能够有效地收集,分析和利用他们掌握的数据的话,那么现在正是时候。


相关文章
|
人工智能 Cloud Native 数据管理
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
788 19
|
网络协议
通俗易懂理解三次握手、四次挥手(TCP)
这篇文章用通俗的语言解释了TCP协议中的三次握手和四次挥手过程,通过比喻和详细的状态变化描述,帮助读者理解建立和断开连接的原理和原因。
通俗易懂理解三次握手、四次挥手(TCP)
|
数据采集 NoSQL Java
Lua 脚本读取 redis 数据|学习笔记
快速学习 Lua 脚本读取 redis 数据
Lua 脚本读取 redis 数据|学习笔记
标准的二维表问题
一.问题描述   设 n 是一个正整数, 2*n 的标准二维表是由正整数 1, 2, ..., 2*n 组成的2*n 数组, 该数组的每行从左到右递增, 每列从上到下递增. 2*n 的标准二维表全体记为 Tab(n). 譬如: 当 n = 3 时 Tab(3) 如下:   1 2 3     1 2 4   1 2 5    1 3 4     1 3 5  4 5 6     3 5 6   3 4 6    2 5 6     2 4 6   二.问题分析   同学说就是卡塔南数。
1117 0
|
19天前
|
人工智能 自然语言处理 Shell
🦞 如何在 OpenClaw (Clawdbot/Moltbot) 配置阿里云百炼 API
本教程指导用户在开源AI助手Clawdbot中集成阿里云百炼API,涵盖安装Clawdbot、获取百炼API Key、配置环境变量与模型参数、验证调用等完整流程,支持Qwen3-max thinking (Qwen3-Max-2026-01-23)/Qwen - Plus等主流模型,助力本地化智能自动化。
31878 114
🦞 如何在 OpenClaw (Clawdbot/Moltbot) 配置阿里云百炼 API
|
8天前
|
应用服务中间件 API 网络安全
3分钟汉化OpenClaw,使用Docker快速部署启动OpenClaw(Clawdbot)教程
2026年全新推出的OpenClaw汉化版,是基于Claude API开发的智能对话系统本土化优化版本,解决了原版英文界面的使用壁垒,实现了界面、文档、指令的全中文适配。该版本采用Docker容器化部署方案,开箱即用,支持Linux、macOS、Windows全平台运行,适配个人、企业、生产等多种使用场景,同时具备灵活的配置选项和强大的扩展能力。本文将从项目简介、部署前准备、快速部署、详细配置、问题排查、监控维护等方面,提供完整的部署与使用指南,文中包含实操代码命令,确保不同技术水平的用户都能快速落地使用。
4667 4
|
14天前
|
人工智能 安全 机器人
OpenClaw(原 Clawdbot)钉钉对接保姆级教程 手把手教你打造自己的 AI 助手
OpenClaw(原Clawdbot)是一款开源本地AI助手,支持钉钉、飞书等多平台接入。本教程手把手指导Linux下部署与钉钉机器人对接,涵盖环境配置、模型选择(如Qwen)、权限设置及调试,助你快速打造私有、安全、高权限的专属AI助理。(239字)
6690 17
OpenClaw(原 Clawdbot)钉钉对接保姆级教程 手把手教你打造自己的 AI 助手
|
13天前
|
人工智能 机器人 Linux
OpenClaw(Clawdbot、Moltbot)汉化版部署教程指南(零门槛)
OpenClaw作为2026年GitHub上增长最快的开源项目之一,一周内Stars从7800飙升至12万+,其核心优势在于打破传统聊天机器人的局限,能真正执行读写文件、运行脚本、浏览器自动化等实操任务。但原版全英文界面对中文用户存在上手门槛,汉化版通过覆盖命令行(CLI)与网页控制台(Dashboard)核心模块,解决了语言障碍,同时保持与官方版本的实时同步,确保新功能最快1小时内可用。本文将详细拆解汉化版OpenClaw的搭建流程,涵盖本地安装、Docker部署、服务器远程访问等场景,同时提供环境适配、问题排查与国内应用集成方案,助力中文用户高效搭建专属AI助手。
4697 10