一文扫尽Java中的并发原子类,yyds!!

简介: 一文扫尽Java中的并发原子类,yyds!!

大家好,我是冰河~~

中秋假期已经过去了,小伙伴们玩得开不开心呀?看票圈很多小伙伴都在景区打卡了,这个假期我是没咋出去玩,放假的前两天宅在家里看完了《分布式系统与一致性》这本书,挺不错的,后面给大家写几篇总结。

之前在票圈说写一篇,后面整理完脑图后发现一个问题,一篇文章根本说不清楚啊。除了要写一些书中的精华之外,更多的是要结合冰河实际工作中接触的分布式系统的真实架构案例,写一些冰河个人的总结和体会,希望能够为大家带来一些实质性的帮助。

好了,中秋假期过去了,小伙伴们跟冰河一起收收心,今天我们再上一篇高并发干货,一起来聊聊Java中的并发原子类。接下来,我们开始今天的正文吧。

 

本文结构

image.png

Java原子类

java.util.concurrent.atomic包下有很多支持并发的原子类,某种程度上,我们可以将其分成:基本数据类型的原子类、对象引用类型的原子类、数组类型的原子类、对象属性类型的原子类和累加器类型的原子类 五大类。

image.png

接下来,我们就一起来看看这些并发原子类吧。

基本数据类型的原子类

基本数据类型的原子类包含:AtomicBoolean、AtomicInteger和AtomicLong。

打开这些原子类的源码,我们可以发现,这些原子类在使用上还是非常简单的,主要提供了如下这些比较常用的方法。

  • 原子化加1或减1操作
//原子化的i++
getAndIncrement() 
//原子化的i--
getAndDecrement() 
//原子化的++i
incrementAndGet() 
//原子化的--i
decrementAndGet()
  • 原子化增加指定的值
//当前值+=delta,返回+=前的值
getAndAdd(delta) 
//当前值+=delta,返回+=后的值
addAndGet(delta)
  • CAS操作
//CAS操作,返回原子化操作的结果是否成功
compareAndSet(expect, update)
  • 接收函数计算结果
//结果数据可通过传入func函数来计算
getAndUpdate(func)
updateAndGet(func)
getAndAccumulate(x,func)
accumulateAndGet(x,func)

对象引用类型的原子类

对象引用类型的原子类包含:AtomicReference、AtomicStampedReference和AtomicMarkableReference。

利用这些对象引用类型的原子类,可以实现对象引用更新的原子化。AtomicReference提供的原子化更新操作与基本数据类型的原子类提供的更新操作差不多,只不过AtomicReference提供的原子化操作常用于更新对象信息。这里不再赘述。

需要特别注意的是:使用对象引用类型的原子类,要重点关注ABA问题。

关于ABA问题,文章的最后部分会说明。

好在AtomicStampedReference和AtomicMarkableReference这两个原子类解决了ABA问题。

AtomicStampedReference类中的compareAndSet的方法签名如下所示。

boolean compareAndSet(V expectedReference, V newReference, int expectedStamp, int newStamp)

可以看到,AtomicStampedReference类解决ABA问题的方案与乐观锁的机制比较相似,实现的CAS方法增加了版本号。只有expectedReference的值与内存中的引用值相等,并且expectedStamp版本号与内存中的版本号相同时,才会将内存中的引用值更新为newReference,同时将内存中的版本号更新为newStamp。

AtomicMarkableReference类中的compareAndSet的方法签名如下所示。

boolean compareAndSet(V expectedReference, V newReference, boolean expectedMark, boolean newMark)

可以看到,AtomicMarkableReference解决ABA问题的方案就更简单了,在compareAndSet方法中,新增了boolean类型的校验值。这些理解起来也比较简单,这里,我也不再赘述了。

对象属性类型的原子类

对象属性类型的原子类包含:AtomicIntegerFieldUpdater、AtomicLongFieldUpdater和AtomicReferenceFieldUpdater。

利用对象属性类型的原子类可以原子化的更新对象的属性。值得一提的是,这三个类的对象都是通过反射的方式生成的,如下是三个类的newUpdater()方法。

//AtomicIntegerFieldUpdater的newUpdater方法
public static <U> AtomicIntegerFieldUpdater<U> newUpdater(Class<U> tclass, String fieldName)
//AtomicLongFieldUpdater的newUpdater方法
public static <U> AtomicLongFieldUpdater<U> newUpdater(Class<U> tclass, String fieldName)
//AtomicReferenceFieldUpdater的newUpdater方法    
public static <U,W> AtomicReferenceFieldUpdater<U,W> newUpdater(Class<U> tclass,
                                                                Class<W> vclass,
                                                                String fieldName)

这里,我们不难看出,在AtomicIntegerFieldUpdater、AtomicLongFieldUpdater和AtomicReferenceFieldUpdater三个类的newUpdater()方法中,只有传递的Class信息,并没有传递对象的引用信息。如果要更新对象的属性,则一定要使用对象的引用,那对象的引用是在哪里传递的呢?

其实,对象的引用是在真正调用原子操作的方法时传入的。这里,我们就以compareAndSet()方法为例,如下所示。

//AtomicIntegerFieldUpdater的compareAndSet()方法
compareAndSet(T obj, int expect, int update) 
//AtomicLongFieldUpdater的compareAndSet()方法
compareAndSet(T obj, long expect, long update) 
//AtomicReferenceFieldUpdater的compareAndSet()方法    
compareAndSet(T obj, V expect, V update)

可以看到,原子化的操作方法仅仅是多了一个对象的引用,使用起来也非常简单,这里,我就不再赘述了。

另外,需要注意的是:使用AtomicIntegerFieldUpdater、AtomicLongFieldUpdater和AtomicReferenceFieldUpdater更新对象的属性时,对象属性必须是volatile类型的,只有这样才能保证可见性;如果对象属性不是volatile类型的,newUpdater()方法会抛出IllegalArgumentException这个运行时异常。

数组类型的原子类

数组类型的原子类包含:AtomicIntegerArray、AtomicLongArray和AtomicReferenceArray。

利用数组类型的原子类可以原子化的更新数组里面的每一个元素,使用起来也非常简单,数组类型的原子类提供的原子化方法仅仅是在基本数据类型的原子类和对象引用类型的原子类提供的原子化方法的基础上增加了一个数组的索引参数。

例如,我们以compareAndSet()方法为例,如下所示。

//AtomicIntegerArray的compareAndSet()方法
compareAndSet(int i, int expect, int update) 
//AtomicLongArray的compareAndSet()方法
compareAndSet(int i, long expect, long update)     
//AtomicReferenceArray的compareAndSet()方法   
compareAndSet(int i, E expect, E update)

可以看到,原子化的操作方法仅仅是对多了一个数组的下标,使用起来也非常简单,这里,我就不再赘述了。

累加器类型的原子类

累加器类型的原子类包含:DoubleAccumulator、DoubleAdder、LongAccumulator和LongAdder。

累加器类型的原子类就比较简单了:仅仅支持值的累加操作,不支持compareAndSet()方法。对于值的累加操作,比基本数据类型的原子类速度更快,性能更好。

使用原子类实现count+1

在并发编程领域,一个经典的问题就是count+1问题。也就是在高并发环境下,如何保证count+1的正确性。一种方案就是在临界区加锁来保护共享变量count,但是这种方式太消耗性能了。

如果使用Java提供的原子类来解决高并发环境下count+的问题,则性能会大幅度提升。

简单的示例代码如下所示。

public class IncrementCountTest{
    private  AtomicLong count = new AtomicLong(0);
    public void incrementCountByNumber(int number){
        for(int i = 0; i < number; i++){
            count.getAndIncrement();
        }
    }
}

可以看到,原子类实现count+1问题,既没有使用synchronized锁,也没有使用Lock锁。

从本质上讲,它使用的是无锁或者是乐观锁方案解决的count+问题,说的具体一点就是CAS操作。

CAS原理

CAS操作包括三个操作数:需要读写的内存位置(V)、预期原值(A)、新值(B)。如果内存位置与预期原值的A相匹配,那么将内存位置的值更新为新值B。

如果内存位置与预期原值的值不匹配,那么处理器不会做任何操作。

无论哪种情况,它都会在 CAS 指令之前返回该位置的值。(在 CAS 的一些特殊情况下将仅返回 CAS 是否成功,而不提取当前值。)

简单点理解就是:位置 V 应该包含值 A;如果包含该值,则将 B 放到这个位置;否则,不要更改该位置,只返回位置V现在的值。这其实和乐观锁的冲突检测+数据更新的原理是一样的。

ABA问题

因为CAS需要在操作值的时候检查下值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A,那么使用CAS进行检查时会发现它的值没有发生变化,但是实际上却变化了。

ABA问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加1,那么A-B-A 就会变成1A-2B-3A。

从Java1.5开始JDK的atomic包里提供的AtomicStampedReference类和AtomicMarkableReference类能够解决CAS的ABA问题。

关于AtomicStampedReference类和AtomicMarkableReference类前文有描述,这里不再赘述。

好了,今天就到这儿吧,我是冰河,我们下期见~~

相关文章
|
6月前
|
安全 Java 编译器
揭秘JAVA深渊:那些让你头大的最晦涩知识点,从泛型迷思到并发陷阱,你敢挑战吗?
【8月更文挑战第22天】Java中的难点常隐藏在其高级特性中,如泛型与类型擦除、并发编程中的内存可见性及指令重排,以及反射与动态代理等。这些特性虽强大却也晦涩,要求开发者深入理解JVM运作机制及计算机底层细节。例如,泛型在编译时检查类型以增强安全性,但在运行时因类型擦除而丢失类型信息,可能导致类型安全问题。并发编程中,内存可见性和指令重排对同步机制提出更高要求,不当处理会导致数据不一致。反射与动态代理虽提供运行时行为定制能力,但也增加了复杂度和性能开销。掌握这些知识需深厚的技术底蕴和实践经验。
127 2
|
6月前
|
安全 Java 调度
解锁Java并发编程高阶技能:深入剖析无锁CAS机制、揭秘魔法类Unsafe、精通原子包Atomic,打造高效并发应用
【8月更文挑战第4天】在Java并发编程中,无锁编程以高性能和低延迟应对高并发挑战。核心在于无锁CAS(Compare-And-Swap)机制,它基于硬件支持,确保原子性更新;Unsafe类提供底层内存操作,实现CAS;原子包java.util.concurrent.atomic封装了CAS操作,简化并发编程。通过`AtomicInteger`示例,展现了线程安全的自增操作,突显了这些技术在构建高效并发程序中的关键作用。
92 1
|
3月前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
3月前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
3月前
|
Java 数据库连接 数据库
如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面
本文介绍了如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面。通过合理配置初始连接数、最大连接数和空闲连接超时时间,确保系统性能和稳定性。文章还探讨了同步阻塞、异步回调和信号量等并发控制策略,并提供了异常处理的最佳实践。最后,给出了一个简单的连接池示例代码,并推荐使用成熟的连接池框架(如HikariCP、C3P0)以简化开发。
89 2
|
4月前
|
Java
【编程进阶知识】揭秘Java多线程:并发与顺序编程的奥秘
本文介绍了Java多线程编程的基础,通过对比顺序执行和并发执行的方式,展示了如何使用`run`方法和`start`方法来控制线程的执行模式。文章通过具体示例详细解析了两者的异同及应用场景,帮助读者更好地理解和运用多线程技术。
54 1
|
5月前
|
Java API 容器
JAVA并发编程系列(10)Condition条件队列-并发协作者
本文通过一线大厂面试真题,模拟消费者-生产者的场景,通过简洁的代码演示,帮助读者快速理解并复用。文章还详细解释了Condition与Object.wait()、notify()的区别,并探讨了Condition的核心原理及其实现机制。
|
6月前
|
存储 Java
Java 中 ConcurrentHashMap 的并发级别
【8月更文挑战第22天】
83 5
|
6月前
|
存储 算法 Java
Java 中的同步集合和并发集合
【8月更文挑战第22天】
62 5
|
6月前
|
缓存 Java 调度
【Java 并发秘籍】线程池大作战:揭秘 JDK 中的线程池家族!
【8月更文挑战第24天】Java的并发库提供多种线程池以应对不同的多线程编程需求。本文通过实例介绍了四种主要线程池:固定大小线程池、可缓存线程池、单一线程线程池及定时任务线程池。固定大小线程池通过预设线程数管理任务队列;可缓存线程池能根据需要动态调整线程数量;单一线程线程池确保任务顺序执行;定时任务线程池支持周期性或延时任务调度。了解并正确选用这些线程池有助于提高程序效率和资源利用率。
86 2