ODS:输出多样化采样,有效增强白盒和黑盒攻击的性能 | NeurIPS 2020

简介: ODS:输出多样化采样,有效增强白盒和黑盒攻击的性能 | NeurIPS 2020

【简介】


本文提出了一种新的采样策略——输出多样化采样,替代对抗攻击方法中常用的随机采样,使得目标模型的输出尽可能多样化,以此提高白盒攻击和黑盒攻击的有效性。实验表明,该种采样策略可以显著提升对抗攻击方法的性能。


image.png

论文地址:

https://arxiv.org/abs/2003.06878


论文代码:

https://github.com/ermongroup/ODS

 

【引言】


神经网络在图像分类任务上取得了很大的成功,但是它们却很容易被对抗样本攻击——人眼不可察的微小扰动就能让其分类错误。因此,设计强有力的攻击方法对评估模型的鲁棒性和防御能力至关重要。目前大部分攻击方法都要依赖于随机采样,也就是给输入图片加入随机噪声。在白盒攻击中,随机采样被用于寻找对抗样本的初始化过程;在黑盒攻击中,随机采样被用来探索生成对抗样本的更新方向。在这些攻击中,都是在模型的输入空间(像素空间)进行随机采样以实现尽可能大的多样性,从而提高对抗的成功率。但是对于复杂的非线性深度神经网络模型,输入空间样本的多样性并不能代表输出空间样本结果的多样性,如下图左侧所示,黑色实心点表示原始输入样本,黑色空心圆圈表示采样得到的扰动,蓝色虚线箭头表示随机采样,我们可以看到,当把随机扰动添加到原始样本上,在输出空间,其对应的输出值距离原始样本的输出值非常接近,也就是说输入空间随机采样的多样性并不能直接导致输出空间结果的多样性。因此,本文作者提出一种新的采样策略——输出多样化采样(ODS),目的在于让样本的输出尽可能多样化。如下图左侧红色实线箭头所示,输入空间的采样结果,映射到输出空间,也能具有很大的多样性。而下图右侧类似,只不过是应用到黑盒攻击中,通过让代理模型的输出尽可能多样化来实现目标模型(被攻击的模型)输出的多样化。


image.png

【模型介绍】


1、输出多样化采样(ODS)


image.png

2、利用ODS增强白盒攻击


在白盒攻击中,我们利用ODS来初始化寻找对抗样本的优化过程(被称为ODI)的起始点,具体公式为:


image.png

image.png

3、利用ODS增强黑盒攻击


image.png

具体算法流程如下表所示:


image.png

对于原始输入图片,在黑盒攻击生成对抗样本的优化过程中,每次迭代都朝着的方向,从而让模型的输出尽可能多样化。

 

【实验结果】


1、白盒攻击实验


在这里,针对两种经典的白盒攻击方法PGD攻击和 C&W攻击,作者比较了利用ODI初始化和普通的随机初始化(naive)的对抗攻击性能,如下表所示。


image.png


我们可以看到,在两种攻击方法PGD和C&W中,采用ODI策略的方法比普通的随机采样在多个模型上都能取得更低的准确率,也就是具有更强的攻击效力。此外,相比于基于MNIST数据集训练的模型,ODI方法在基于CIFAR-10和ImageNet数据集训练的模型上显示出了更大的优势(ODI的结果和naïve的结果差距更大)。作者猜测这可能是受到模型非线性程度的影响。由于基于CIFAR-10和ImageNet的模型具有更强的非线性,因此输入空间和输出空间两者的多样性之间的差距更大,而ODI由于使得样本输出足够多样化,故而有效增强了对抗攻击的性能。

 

作者进一步比较了结合ODI策略的PGD攻击方法(ODI-PGD)与其他对抗攻击方法的性能,如下表所示:


image.png


这里tuned ODI-PGD是指参数经过微调后的ODI-PGD。可以看到,tuned ODI-PGD具有最好的性能,而在基于CIFAR-10的模型上,一般的ODI-PGD的性能也能超过tuned PGD, 同时还具有更小的计算开销。

 

2、黑盒攻击实验


在这里,作者主要评估了利用ODS策略的黑盒攻击方法和其他攻击方法在生成对抗样本的过程中查询次数的多少。


image.png

如上表所示,作者比较了结合ODS的黑盒攻击方法(SimBA-ODS)和原始的黑盒攻击方法(SimBA-DCT),可以发现SimBA-ODS大大减少了查询次数,同时具有更小的扰动距离,也就是更加接近正常样本。

 

此外,作者还比较了查询次数和攻击成功率的关系,以及查询次数和扰动大小的关系。


image.png


如上图所示,可以发现结合ODS的方法(SimBA-ODS)比一般方法(Square)能在较少的查询次数时就达到很高的攻击成功率,从而可以大大减少计算时间开销。


image.png


如上图所示,在有目标攻击和无目标攻击中,结合ODS的攻击方法(Boundary-ODS)在3000多次查询后就能达到其他方法10000次查询才达到的对抗扰动水平。

相关文章
|
机器学习/深度学习 人工智能 安全
论文介绍:从黑盒生产语言模型中提取信息的模型窃取攻击
【2月更文挑战第22天】论文介绍:从黑盒生产语言模型中提取信息的模型窃取攻击
291 6
论文介绍:从黑盒生产语言模型中提取信息的模型窃取攻击
|
Shell 网络安全 开发工具
Tabby终端工具的配置和使用
Tabby终端工具的配置和使用
8417 0
IDEA--Grep Console-日志管理神器
IDEA--Grep Console-日志管理神器
661 0
|
3月前
|
Java 数据库连接 数据库
Java 组件详细使用方法与封装实战指南
本指南详解Java核心组件使用与封装技巧,涵盖跨平台开发、面向对象编程、多线程、数据库操作等关键内容,并提供工具类、连接池、异常及响应结果的封装方法。结合Spring框架、MyBatis、Spring Boot等主流技术,助你掌握高质量Java组件设计与开发实践。
153 2
|
3月前
|
数据采集 运维 供应链
终于有人讲清楚了!ERP、MES、SRM、SCM、QMS、EAM、APS、PLM、OA、CRM、WMS、TMS、SCADA、HR...
在数字化时代,企业依赖多种信息系统提升运营效率。本文详解ERP、MES、SRM等14类系统功能与应用场景,并剖析其协同价值。从初创到全球化企业,各阶段系统引入策略清晰展现。
|
7月前
|
移动开发 安全 API
VMware vCenter Server 6.7U3w (安全更新) - ESXi 集中管理软件
VMware vCenter Server 6.7U3w (安全更新) - ESXi 集中管理软件
135 2
VMware vCenter Server 6.7U3w (安全更新) - ESXi 集中管理软件
|
11月前
|
缓存 监控 前端开发
SPA 首屏加载速度优化
【10月更文挑战第14天】解决 SPA 首屏加载速度慢的问题需要综合运用多种优化策略和技术。通过资源压缩、减少异步请求、优化渲染流程、利用缓存、代码分割、预加载等方法,可以有效提高 SPA 首屏加载速度,为用户提供更好的体验。同时,性能监控和分析是持续优化的关键,应根据实际情况不断调整优化策略。在未来,随着技术的不断发展,我们还需要不断探索新的优化方法和途径,以适应不断变化的需求。
263 56
|
机器学习/深度学习 自然语言处理 算法
什么是自然语言处理的语义理解?
【4月更文挑战第8天】
443 2
什么是自然语言处理的语义理解?
|
敏捷开发 定位技术 开发者
poc Proof of Concept
Proof of Concept(简称 POC)是概念验证的意思。在软件开发领域,POC 通常用于验证某个想法或概念是否可行。它通常是一个小型项目或原型,可以通过实际操作来证明某个想法或技术的有效性。POC 可以帮助开发者在项目开始之前确定技术的可行性,减少开发过程中的风险。
2031 3
第三章:什么是 BACnet/IP 网络
BACnet/IP 网络是一个或多个 IP 子网(IP 域)的集合,这些子网分配有单个 BACnet 网络号。BACnet 互联网络由两个或多个 BACnet 网络组成。这些网络可能是 BACnet/IP 网络,也可能使用其他指定的技术。此标准还支持以类似于 IP 子网的方式包含 IP 多播组,如下文中所述。
679 0
第三章:什么是 BACnet/IP 网络